
Serverless Application in
Machine Learning

马汝辉副教授博导

计算机科学与工程系

上海交通大学

目 录

NumPyWren1

Cirrus2

LambdaML3

INFless4

Conclusion5

NumPyWren

• Serverless Linear Algebra

01

NumPyWren Overview

Background

• Current distributed programming abstractions such as MPI and MapReduce rely on the tightly

integrated resources in a collection of individual servers.

• To write applications for a disaggrated datacenter, the datacenter operator must expose a new

programming abstraction.

Motivation

• Serverless computing is a programming model in which the cloud provider manages the

servers, and also dynamically manages the allocation of resources.

• Disaggregation can provide benefits to linear algebra tasks as these workloads have large

dynamic range in memory and computation requirements.

Contribution

• large scale linear algebra algorithms can be efficiently executed using stateless functions

and disaggregated storage

• design LAmbdaPACK, a domain specific language for linear algebra algorithms

• NumPyWren can scale to run Cholesky decomposition

Background: Serverless Computing

Cloud providers offer the ability to execute functions on demand, hiding cluster configuration

and management overheads from end users.

① Cloud providers offer a number of storage options ranging from key-value stores to relational

databases.

• The cost of data storage in an object storage system is often orders of magnitude lower when

compared to instance memory.

② Cloud providers also offer publish-subscribe services like Amazon SQS or Google Task Queue.

Background: Serverless Computing

Cloud providers offer the ability to execute functions on demand, hiding cluster configuration

and management overheads from end users.

③ Computation resources offered in serverless platforms are typically restricted to a single CPU core

and a short window of computation.

• AWS Lambda provides 900 seconds of compute on a single AVX core with access to up to 3

GB of memory and 512 MB of disk storage.

④ The linear scalability in function execution is only useful for embarrassingly parallel computations

when there is no communication between the individual workers.

Background: Linear Algebra Algorithms

Cholesky factorization is one of the most popular algorithms for solving linear equations,

and it is widely used in applications such as matrix inversion, partial differential equations,

and Monte Carlo simulations.

𝐴𝑥 = 𝑏

𝐴 = 𝐿𝐿𝑇 𝑂 𝑛3

𝐿𝑦 = 𝑏 𝑂 𝑛2

𝐿𝑇𝑥 = 𝑦 𝑂 𝑛2

Communication-Avoiding Cholesky

① Diagonal block Cholesky

decomposition

② Parallel column update

③ Parallel submatrix update

④ Diagonal block Cholesky

decomposition
❷ fine-grained dependencies❶ dynamic parallelism

Task Enqueue: enqueue the first task that needs to be executed into the task queue

Executor Provisioning: launch an executor, and maintain the number of active executors

based on task queue size

Task Execution: manage executing and scheduling NumPyWren tasks

Runtime State Update: update the task status in the runtime state store

System Design

The architecture of the execution framework of NumPyWren showing the runtime state during a 6x6 Cholesky

decomposition. The first block Cholesky instruction has been executed as well as a single column update.

System Design

Fault tolerance in NumPyWren is much simpler to achieve due to the disaggregation of

compute and storage.

Task Lease: NumPyWren executes failed tasks via a lease mechanism, which allows the

system to track task status without a scheduler periodically communicating with executors.

Failure Detection and Recovery: Failure detection happens through lease expiration and

recovery latency is determined by lease length.

Garbage Collection: it is imperative we clear the state when it is no longer necessary.

Autoscaling

• Task scheduling and worker management is decoupled in NumPyWren, which allows auto-

scaling of computing resources for a better cost-performance trade-off.

• We adopt a simple auto-scaling heuristic and it achieves good utilization while keeping job

completion time low.

Evaluation

System Comparisons

• The amount of bytes read by NumPyWren is always greater than MPI.

• Even though NumPyWren reads more than 21x bytes over the network when compared to MPI,

our end to end completion time is only 47% slower.

Evaluation

System Comparisons

• For MPI the core-seconds is the total amount of cores multiplied by the wall clock runtime.

• For NumPyWren we wish to only account for “active cores" in our core-second calculation, as

the free cores can be utilized by other tasks.

• NumPyWren can achieve resource savings of over 3x for the SVD algorithm.

Evaluation

Scalability

a) Completion time on various problem sizes when NumPyWren is run on same setup as

ScaLAPACK

b) Total execution core-seconds for Cholesky when the NumPyWren and ScaLAPACK are

optimized for utilization.

c) Weak scaling behavior of NumPyWren.

d) Comparison of NumPyWren with 128 core single node machine running Cholesky

decompositions of various sizes

Cirrus

• Cirrus: a Serverless Framework for End-to-end ML

Workflows02

Cirrus Overview

Background

• The widespread adoption of ML techniques in a wide-range of domains has made machine

learning one of the leading revenue-generating datacenter workloads.

• The complexity of ML workflows leads to two problems, over-provisioning and explicit resource

management.

Motivation

• Serverless computing relies on the cloud infrastructure to automatically address the challenges

of resource provisioning and management.

• The benefits of serverless computing for ML hinge on the ability to run ML algorithms efficiently.

Contribution

• Cirrus is designed to efficiently support the entire ML workflow.

• Cirrus builds on three key design properties, ultra-lightweight, cost-saving, and stateless.

• It yields a 3.75x improvement on time-to-accuracy compared to the best-performing

configuration ML specialized frameworks.

Background: End-to-end ML Workflow

Dataset preprocessing typically involves an expensive map/reduce operation on data.

Model training: Workers consume data shards, compute gradients, and synchronize with a

parameter server.

Hyperparameter optimization to tune model and training parameters involves running

multiple training instances.

Background: Challenges

Machine Learning

• Over-provisioning: The heterogeneity of the different tasks in an ML workflow leads to a

significant resource imbalance during the execution of a training workflow.

• Explicit resource management: Systems that leverage VMs for machine learning workloads

generally require users to repeatedly perform a series of onerous tasks.

Serverless Computing

• Small local memory and storage: Lambda functions, by design, have very limited memory

and local storage.

• Low bandwidth and lack of P2P communication: Lambda functions have limited available

bandwidth when compared with a regular VM.

• Short-lived and unpredictable launch times: Lambda functions are short-lived and their

launch times are highly variable.

• Lack of fast shared storage: Because lambda functions cannot connect between themselves,

shared storage needs to be used.

Design: Principles

Adaptive, fine-grained resource allocation

• To avoid resource waste that arises from over-provisioning, Cirrus should flexibly adapt the

amount of resources reserved for each workflow phase with fine-granularity.

Stateless server-side backend

• To ensure robust and efficient management of serverless compute resources, Cirrus, by design,

operates a stateless, server-side backend.

End-to-end serverless API

• Model training is not the only important task an ML researcher has to perform.

High scalability

• ML tasks are highly compute intensive, and thus can take a long time to complete without

efficient parallelization.

Design: Framework

Client Side

• Client Frontend

• Client Backend

Server Side

• Lambda Worker

• Data Store

Design: Client Side

Python frontend

• Preprocessing

• Training

• Hyperparameter optimization

Client-side backend

• parse training data and load it to S3

• launch the Cirrus workers on lambdas

• manage the distributed data store

• keep track of the progress of computations

• return results to the Python frontend

Design: Server Side

Worker runtime

• a smart iterator for training datasets stored in S3

• provides an API for the distributed data store

Distributed data store

Design: End-to-end Workflow

Evaluation: Sparse Logistic Regression

Baseline

• Bosen

• TensforFlow

• Spark

Evaluation: Scalability

Storage scalability

Compute scalability

Parameter server scalability

Evaluation: The Benefits of ML Specialization

LambdaML

• Towards Demystifying Serverless Machine Learning

Training03

Background: Distributed Machine Learning

Data and Model

Optimization Algorithm

• In each iteration, the training procedure would typically scan the training data, compute

necessary quantities (e.g., gradients), and update the model.

• Training ML models in a distributed setting is more complex, due to the extra complexity of

distributed computation as well as coordination of the communication between executors.

Communication Mechanism

• Communication Channel: The efficiency of data transmission relies on the underlying

communication channel.

• Communication Pattern: Gather, AllReduce, and ScatterReduce

• Synchronization Protocol: bulk synchronous parallel (BSP), asynchronous parallel (ASP)

Background: FaaS vs. IaaS for ML

IaaS: users have to build a cluster by renting VMs or reserve a cluster with predetermined

configuration parameters

• Cons: There is no elasticity or auto-scaling if the reserved computation resources turn out to be

insufficient.

FaaS

• Pros: Resource allocation in FaaS is on-demand and auto-scaled, and users are only charged

by their actual resource usages.

• Cons: FaaS currently does not support customized scaling and scheduling strategies.

Design: System Overview

① Load data

② Compute statistics

③ Send statistics

④ Aggregate statistics

⑤ Update model

Distributed SGD

• Stochastic gradient descent (SGD) is

perhaps the most popular optimization

algorithm.

• Gradient Averaging: GA updates the

global model in every iteration by

harvesting and aggregating the (updated)

gradients from the executors.

• Model Averaging: MA collects and

aggregates the (updated) local models.

Distributed ADMM

• ADMM breaks a large-scale convex

optimization problem into several smaller

subproblems

Design: Distributed Optimization Algorithm

Design: Communication Channel

① Each executor stores its generated

intermediate data as a temporary file in S3;

② The first executor pulls all temporary files

from the storage service and merges them

to a single file;

③ The leader writes the merged file back to

the storage service;

④ All the other executors (except the leader)

read the merged file from the storage

service;

⑤ All executors refresh their (local) model

with information read from the merged file.

An FaaS-based data aggregation

Design: Communication Pattern

AllReduce

ScatterReduce

Design: Synchronization Protocol

Synchronous

• Merging phase: All executors first write their local

updates to the storage service. The

reducer/aggregator waits all the other executors.

• Updating phase: The aggregator finishes

aggregating all data and stores the aggregated

information back to the storage service.

Asynchronous

• One replica of the trained model is stored on the

storage service as a global state.

• Each executor runs independently – it reads the

model from the storage service, updates the

model with training data, writes

• the new model back to the storage service –

without caring about the speeds of the other

executors.

Evaluation: Distributed Optimization Algorithm

Evaluation: Communication Channel

Comparison of S3, Memcached, DynamoDB, and VM-based parameter server.

A relative cost larger than 1 means S3 is cheaper, whereas a slowdown larger than 1 means

S3 is faster.

DynamoDB cannot handle a large model such as MobileNet.

Evaluation

Communication Patterns

Synchronization Protocols

INFless

• INFless: A Native Serverless System for Low-

Latency, High-Throughput Inference04

INFless’ s Overview

Background: Existing serverless platforms do not cater to the needs of ML inference.

• do not address the challenge of providing solutions for guaranteeing latency

• the resource efficiency at the serverless provider side is also very low

Design Goal: A native serverless inference system introduces several challenges that need

to be addressed.

• Low latency

• High throughput

• Low overhead

Contribution

• We co-design the batch management and heterogeneous resource allocation mechanism, and

propose the non-uniform scaling policy to maximize resource efficiency.

• We propose a lightweight combined operator profiling method.

• We design a novel Long-Short Term Histogram (LSTH) policy.

• We completely implement INFless based on OpenFaaS.

Background: Limitations of Existing Serverless Platforms

Observation #1: High latency

• The commercial serverless platform lacks the support of accelerators and therefore cannot

provide low latency services for large-sized inference models.

Observation #2: For batch-enabled inference, commercial serverless platforms cannot

provide low-latency services for some small-sized models.

Observation #3: Resource over-provisioning

• The proportional CPU-memory allocation policy set by a commercial serverless platform does

not fit with computationally-intensive inference.

Observation #4: The “one-to-one mapping” request processing policy of commercial

serverless platforms causes low resource utilization.

Observation #5: OTP batching lacks the codesign of batch configuration, instance

scheduling and resource allocation, bringing only limited throughput improvement.

Design: System Architecture

① Function deployment

② DAG structure parsing

③ Operator profiling

④ Inference query

⑤ Dispatching and batching

⑥ Resource configuration

⑦ Cold-start avoidance

Design: Built-in, Non-Uniform Batching

Built-in: Batching is integrated into the serverless platform, enabling simultaneous, collaborative

control over batch size, resource allocation and placements.

Non-uniform: Each instance has an individual batch queue to aggregate inference requests.

Design: Combined Operator Profiling

Observation: Inference functions share a common set of operators, and the execution time

is dominated by a small subset of them.

Database: build a operator profile database <operator, batch-size, CPU, GPU, time>, and

estimate the model execution latency based on the database.

Result

Design: Managing Cold Starts with LSTH

Long-term periodicity (LTP): the request load shows a diurnal user access pattern overall;

Short-term burst (STB): there are many sudden changes (including both increases and

decreases) in short times.

Long-Short Term Histogram (LSTH)

pre-warm = 𝛾𝐿pre−warm + (1 − 𝛾)𝑆pre−warm
keep-alive = 𝛾𝐿keep−alive + (1 − 𝛾)𝑆keep−alive

Evaluation: Local Cluster Evaluation

High throughput: INFless improves system throughput by 2x-5x.

Component analysis: Every component of INFless contributes much to throughput

improvement, with batching being the highest.

Flexible configurations: INFless opts for flexible configurations on both batch-sizes and

resource allocations.

Evaluation: Local Cluster Evaluation

Less over-provisioning: INFless’s resource allocation policy reduces the resource

provisioning significantly.

SLO violation: INFless can guarantee the latency SLO of inference workloads.

Cold start: Compared with HHP, our LSTH policy can reduce the cold start rate by 20%.

Evaluation: Large Scale Simulation

Scalability: INFless scales well in large-scale evaluations.

Resource fragments: INFless’s resource-aware scheduling algorithm reduces the resource

fragments significantly.

Cost efficiency: INFless can help service developers and cloud providers reduce the cost of

constructing inference services.

Conclusion

05

Serverless and Machine Learning

Paper Year Conference Topic

NumPyWren 2020 SoCC Matrix computation

Cirrus 2019 SoCC Model training

LambdaML 2021 SIGMOD Model training

INFless 2022 ASPLOS Model inference

感谢聆听

	幻灯片 1: Serverless Application in Machine Learning
	幻灯片 2
	幻灯片 3: NumPyWren
	幻灯片 4
	幻灯片 5
	幻灯片 6
	幻灯片 7
	幻灯片 8
	幻灯片 9
	幻灯片 10
	幻灯片 11
	幻灯片 12
	幻灯片 13
	幻灯片 14: Cirrus
	幻灯片 15
	幻灯片 16
	幻灯片 17
	幻灯片 18
	幻灯片 19
	幻灯片 20
	幻灯片 21
	幻灯片 22
	幻灯片 23
	幻灯片 24
	幻灯片 25
	幻灯片 26: LambdaML
	幻灯片 27
	幻灯片 28
	幻灯片 29
	幻灯片 30
	幻灯片 31
	幻灯片 32
	幻灯片 33
	幻灯片 34
	幻灯片 35
	幻灯片 36
	幻灯片 37: INFless
	幻灯片 38
	幻灯片 39
	幻灯片 40
	幻灯片 41
	幻灯片 42
	幻灯片 43
	幻灯片 44
	幻灯片 45
	幻灯片 46
	幻灯片 47: Conclusion
	幻灯片 48
	幻灯片 49

