
Introduction to Serverless
Computing

马汝辉 副教授

计算机科学与工程系

上海交通大学

目 录

Evolution of Cloud Computing1

2

3

4

Emergency of Serverless Computing

Introduction to Serverless Platforms

Limitations of Today’s Serverless

5 Research Frontier in Serverless

01

Evolution of

Cloud Computing

What is Cloud Computing?

Cloud Computing refers to

the applications delivered as services over the Internet

the hardware and systems software in the datacenters that provide those services

Software as a Service (SaaS)Cloud

internal datacenters of a business or other organization not available

 to the general public

cloud in a pay-as-you-go manner available to the general public

(Utility Computing：the service being sold)

Thus, Cloud Computing is the sum of SaaS and Utility Computing, but does not include

Private Clouds.

Public Cloud：

Private Cloud：

Why is Cloud Computing?

Six potential advantages in Cloud Computing：（Berkeley in 2009）

1. The appearance of infinite computing resources available on demand.

2. The elimination of an up-front commitment by Cloud users.

3. The ability to pay for use of computing resources on a short-term basis as needed.

4. Economies of scale that significantly reduced cost due to many, very large data centers.

5. Simplifying operation and increasing utilization via resource virtualization.

6. Higher hardware utilization by multiplexing workloads from different organizations.

√

√

√

√

…

…

Eight Issues in Setting up Cloud Environment

1. Redundancy for availability, so that a single machine failure doesn’t take down the service.

2. Geographic distribution of redundant copies to preserve the service in case of disaster.

3. Load balancing and request routing to efficiently utilize resources.

4. Autoscaling in response to changes in load to scale up or down the system.

5. Monitoring to make sure the service is still running well.

6. Logging to record messages needed for debugging or performance tuning.

7. System upgrades, including security patching.

8. Migration to new instances as they become available.

Service Categories

The standard model of organizing all services available in the cloud into categories is the following：

These 9 categories group services

based on their infrastructure level.

Service Models

A service model indicates the number of infrastructure levels which you decide to rent, and which

ones you decide to manage.

IAAS (Infrastructure As A Service)

With IAAS, you only rent the first 4 categories of

Services(All machines that perform Computing,

Storages, Servers)

The Cloud itself is an IAAS, which is an overall

service that you can rent.

PAAS (Platform As A Service)

With PAAS you rent even more. Because you only

need to provide data and application, you can build

your own software and launch it on the web, making

it available for even millions of people.

PAAS are platforms that you can rent to host your

web applications.

Service Models

A service model indicates the number of infrastructure levels which you decide to rent, and which

ones you decide to manage.

FAAS (Function As A Service)

With FAAS, you can run a serverless application.

The backend of your website is run with functions,

independent pieces of code that serves as a

backend.

Especially when you are small, this choice will save

you plenty of money.

SAAS (Software As A Service)

With SAAS, you are using a pre-made tool available

online. You are not only renting infrastructure, but

also a premade application: analytics and graphing

services are good examples.

02

Emergency of

Serverless Computing

What is Serverless Computing?

Serverless = FaaS + BaaS

FaaS (Function as a Service) offerings：
 Cloud Functions (the core of Serverless Computing）

BaaS (Backend as a Service) offerings：
 specialized serverless frameworks that cater to specific application requirements provided

by cloud platforms

• object storage

• database

• messaging

• big data services

• ...

• short-running: functions are expected to complete in a short time period

• stateless: functions are stateless and only describe the application logic for task

processing

What is Serverless Computing?

Architecture of the serverless cloud

The serverless layer sits between

applications and the base cloud platform,

simplifying cloud programming.

Cloud functions (FaaS) provide general

compute and are complemented by an

ecosystem of specialized Backend as a

Service (BaaS) offerings such as object

storage, databases, or messaging.

Characteristics

（1）Transparency: The execution environment must be transparentto the customer. The processing

node, the virtual machine, the container, its operating system and etc. are all hidden to the customer.

（2）Auto-scaling: The provider should provide an auto-scaling service i.e., the resources should be

made available to the customer instantly per demand.

（3）Pay-as-you-go: The billing mechanism should only reflect the amount of resources the customer

actually used i.e., pay-as-you-go billing model.

（4）Event-driven: The provider does its best effort to complete the customer’s task as soon as it

receives the request and the execution duration is bounded.

（5）Function-level management: The basic elements in serverless services are functions. The

functions are not transparent to the provider. The provider knows their data dependencies, dependencies

to external libraries, run-time environments and state during and after execution.

A number of properties that a service should have in order to call it a serverless service：

Characteristics

Three critical distinctions between serverless and serverful (traditional approach) computing：

1. Decoupled computation and storage

The storage and computation scale separately and are provisioned and priced independently. In

general, the storage is provided by a separate cloud service and the computation is stateless.

2. Executing code without managing resource allocation

Instead of requesting resources, the user provides a piece of code and the cloud automatically

provisions resources to execute that code.

3. Paying in proportion to resources used instead of for resources allocated

Billing is by some dimension associated with the execution, such as execution time, rather than

by a dimension of the base cloud platform, such as size and number of VMs allocated.

The aim and opportunity in serverless computing is to give cloud programmers benefits similar

to those in the transition to high-level programming languages.

Pros and Cons

Pros

For developers:

• Cost saving.

• No worrying about deployment

and provision.

• Increased programming

productivity.

For cloud providers:

• More control over infrastructures.

• Utilize less popular computers.

• Promote business growth.

Cons

• Startup latency.

• Short-lived execution time.

• No direct communication.

• Limited resource (e.g. CPU,

memory)

• No specialized hardware.

Serverless Applications

A simple serverless application model

①The serverless system receives triggered

API queries from the users.

②The controller validates them, and invokes

the functions by creating new sandboxes

(aka the cold startup) or reusing running

warm ones (aka the warm startup).

③Each function invocation runs in an

individual container or a virtual machine.

The serverless system can scale them

horizontally according to the actual

application workload.

④ Each execution worker accesses a

backend database to save execution results.

By further configuring triggers and bridging

interactions, users can customize the execution

for complex applications:

• web applications

• real-time data processing

• AI reasoning

• video transcoding

• ...

①

②

③
④

Serverless Applications

Case 1: Web Applications

O&M-free Function Compute allows

frontend engineers to build cloud-

native web applications by writing

business code, effectively improving

the publication and iteration efficiency

and reduces O&M costs.

Benifits:

• Free from O&M operations and

build applications more efficiently

• Elastically handle load peaks and

valleys with high availability

features

• Provide cost-effective and high-

performance services

• Smoothly migrate traditional

applications to function compute

Serverless Applications

Case 2: Real-time Data Processing

Function Compute provides multiple event

sources. The event triggering mechanism can

process data in real time with just a few lines of

code and simple configurations. For example, the

mechanism can decompress OSS packages,

cleanse logs generated by Log Service or

Tablestore data, and customize consumption of

MNS messages.

Benifits:

• Integrate multiple easy-to-configure

event sources

• Flexibly customize processing logic

Serverless Applications

Case 3: AI Reasoning

O&M-free and elastically scalable

Function Compute allows algorithm

engineers to convert trained models

into elastic and highly available

reasoning services.

Benifits:

• Enable AI engineers to focus more on

algorithms and avoid complex O&M

operations

• Mobilize tens of thousands of computing

resources to eliminate the computing

power bottleneck

• Provide multiple versions for A/B testing to

reduce model-launching risks

• Install third-party libraries by one click to

smoothly debug in local environments

Serverless Applications

Case 4: Video Transcoding

Function Compute and Function Flow

can be used together to create elastic

and highly available Serverless video

processing systems that have

enhanced performance and efficiency

as well as lower costs.

Benifits:

• Flexible transcoding: support custom

transcoding processing logic

• Low cost: provide costs reductions of

over 75%

• Parallel transcoding: automatically

scale based on the number of video

files

• Fast migration: lower migration costs

and simplified operations

03

Introduction to

Serverless Platforms

Serverless Platforms

Commercial Serverless Platforms

• AWS Lambda

• Google Cloud Functions

• Microsoft Azure Functions

• IBM Cloud Functions

• Alibaba Cloud Function Compute

• Tencent Cloud's Serverless Cloud Function (SCF)

• ...

Open-source Serverless Platforms

• OpenWhisk

• OpenFaaS

• Kubeless

• Knative

• Fission

• Nuclio

• ...

OpenWhisk

OpenWhisk is an event-driven compute platform also referred to as Serverless computing or as

Function as a Service (FaaS) that runs code in response to events or direct invocations.

Characteristics

• deploys anywhere

• write functions in any language

• integrate easily with many popular services

• combine your functions into rich compositions

• scaling per-request

• optimal utilization

OpenWhisk offers a rich programming model for

• creating serverless APIs from functions

• composing functions into serverless workflows

• connecting events to functions using rules and triggers

the high-level OpenWhisk architecture

OpenWhisk

Examples of Events include

• changes to database records

• IoT sensor readings that

exceed a certain temperature

• new code commits to a GitHub

repository

• HTTP requests from web or

mobile apps

• ...

Events from external and internal

event sources are channeled

through a trigger, and rules allow

actions to react to these events.
the high-level OpenWhisk architecture

OpenWhisk

Actions can be

• small snippets of code

(JavaScript, Swift and many

other languages are supported)

• custom binary code embedded

in a Docker container

Actions in OpenWhisk are instantly

deployed and executed whenever a

trigger fires.

The more triggers fire, the more

actions get invoked. If no trigger

fires, no action code is running, so

there is no cost. the high-level OpenWhisk architecture

OpenWhisk

In addition to associating actions

with triggers, it is possible to

directly invoke an action by using

• the OpenWhisk API

• CLI

• iOS SDK

A set of actions can also be chained

without having to write any code.

Each action in the chain is invoked

in sequence with the output of one

action passed as input to the next in

the sequence.
the high-level OpenWhisk architecture

OpenWhisk

With traditional long-running virtual

machines or containers, it is

common practice to deploy multiple

VMs or containers to be resilient

against outages of a single instance.

However, OpenWhisk offers an

alternative model with no

resiliency-related cost overhead.

The on-demand execution of

actions provides inherent scalability

and optimal utilization, as the

number of running actions always

matches the trigger rate.
the high-level OpenWhisk architecture

OpenWhisk

Integrations with additional services

and event providers can be added

with packages. A package is a

bundle of feeds and actions.

A feed is a piece of code that

configures an external event source

to fire trigger events.

Actions in packages represent

reusable logic that a service

provider can make available so that

developers not only can use the

service as an event source, but also

can invoke APIs of that service. the high-level OpenWhisk architecture

OpenWhisk

An existing catalog of packages

offers a quick way to enhance

applications with useful capabilities,

and to access external services in

the ecosystem.

Examples of external services that

are OpenWhisk-enabled include

• Cloudant

• The Weather Company

• Slack

• GitHub.

the high-level OpenWhisk architecture

OpenWhisk

Being an open-source project, OpenWhisk stands

on the shoulders of giants, including

• Nginx

• Kafka

• Docker

• CouchDB

All of these components come together to form a

“serverless event-based programming service”.

The system itself mainly consists of only two

custom components, the Controller and the

Invoker. Everything else is already there,

developed by so many people out there in the

open-source community.

To explain all the components in more detail, lets

trace an invocation of an action through the

system as it happens.
The internal flow of processing

OpenWhisk

① Entering the system: nginx

The internal flow of processing

OpenWhisk’s user-facing API is completely HTTP

based and follows a RESTful design.

 As a consequence, the command sent via the wsk

CLI is essentially an HTTP request against the

OpenWhisk system.

The first entry point into the system is through

nginx, “an HTTP and reverse proxy server”.

It is mainly used for SSL termination and forwarding

appropriate HTTP calls to the next component.

①

OpenWhisk

② Entering the system: Controller

The internal flow of processing

Not having done much to our HTTP request, nginx

forwards it to the Controller.

It is a Scala-based implementation of the actual

REST API and thus serves as the interface for

everything a user can do, including CRUD

requests for your entities in OpenWhisk and

invocation of actions.

The Controller first disambiguates what the user is

trying to do. It does so based on the HTTP method

you use in your HTTP request.

As per translation above, the user is issuing a

POST request to an existing action, which the

Controller translates to an invocation of an

action.

②

OpenWhisk

③ Authentication and Authorization: CouchDB

The internal flow of processing

Now the Controller verifies who you are

(Authentication) and if you have the privilege to do

what you want to do with that entity (Authorization).

The credentials included in the request are verified

against the so-called subjects database in a

CouchDB instance.

It is checked that the user exists in OpenWhisk’s

database and that it has the privilege to invoke the

action. The latter effectively gives the user the

privilege to invoke the action, which is what he

wishes to do.

As everything is sound, the gate opens for the next

stage of processing.

③

OpenWhisk

④ Who’s there to invoke the action: Load Balancer

The internal flow of processing

The Load Balancer, which is part of the Controller,

has a global view of the executors available in the

system by checking their health status continuously.

Those executors are called Invokers.

The Load Balancer, knowing which Invokers are

available, chooses one of them to invoke the action

requested.

④

OpenWhisk

⑤ Please form a line: Kafka

The internal flow of processing

From now on, mainly two bad things can happen to

the invocation request sent in:

• The system can crash, losing your invocation.

• The system can be under such a heavy load, that

the invocation needs to wait for other invocations

to finish first.

The answer to both is Kafka, “a high-throughput,

distributed, publish-subscribe messaging system”.

Controller and Invoker solely communicate through

messages buffered and persisted by Kafka.

Once Kafka has confirmed that it got the message,

the HTTP request to the user is responded to with

an ActivationId. The user will use that later on, to

get access to the results of this specific invocation.

⑤

OpenWhisk

⑥ Actually invoking the code already: Invoker

The internal flow of processing

The Invoker is the heart of OpenWhisk. The Invoker’s

duty is to invoke an action.To execute actions in an

isolated and safe way it uses Docker.

Docker is used to setup a new self-encapsulated

environment (called container) for each action that we

invoke in a fast, isolated and controlled way.

In a nutshell, for each action invocation a Docker

container is spawned, the action code gets injected, it

gets executed using the parameters passed to it, the

result is obtained, the container gets destroyed.

This is also the place where a lot of performance

optimization is done to reduce overhead and make

low response times possible.

⑥

OpenWhisk

⑦ Storing the results: CouchDB again

The internal flow of processing

As the result is obtained by the Invoker, it is stored into

the activations database as an activation under the

ActivationId mentioned further above. The activations

database lives in CouchDB.

The Invoker gets the resulting JSON object back from

the action, grabs the log written by Docker, puts them

all into the activation record and stores it into the

database.

The record contains both the returned result and the

logs written. It also contains the start and end time of

the invocation of the action.

⑦

04

Limitations of

Today’s Serverless

Limitations of Serverless Computing Platforms

Four limits in the current state of serverless computing：

1. Inadequate storage for fine-grained operations.

2. Lack of fine-grained coordination.

3. Poor performance for standard communication patterns.

4. Predictable Performance.

Limitation 1: Storage

The stateless nature of

serverless platforms
The fine-grained state sharing

needs of applications
difficult to support

The properties of existing storage services offered by cloud providers

green for good

orange for medium

red for poor

Persistence and availability

guarantees describe how well the

system tolerates failures:

• Local provides reliable storage at

one site

• Distributed ensures the ability to

survive site failures

• Ephemeral describes data that

resides in memory and is subject to

loss

Limitation 1: Storage

Object storage services

• Such as AWS S3, Azure Blob

Storage, and Google Cloud

Storage

• Highly scalable and provide

inexpensive long-term object

storage

• High access costs and high

access latencies

The properties of existing storage services offered by cloud providers

Limitation 1: Storage

Key-value databases

• Such as AWS DynamoDB,

Google Cloud Datastore, and

Azure Cosmos DB

• Provide high IO Per Second

(IOPS)

• Expensive and can take a long

time to scale up

• Not fault tolerant and not

autoscale

The properties of existing storage services offered by cloud providers

Limitation 1: Storage

“Ideal” storage service for

serverless computing

• Transparent provisioning

• Equivalent of compute

autoscaling

• Different applications will likely

motivate different guarantees

of persistence and availability

• Low access costs and low

access latencies

The properties of existing storage services offered by cloud providers

Limitation 2: Coordination

External
Storage

1f

2f

3f

(1) put

(2) get
(3) put

(4) get

If task A uses task B’s output, there must be a way for A to

know when its input is available.

However, none of the existing cloud storage services

come with notification capabilities.

Current methods:

• Cloud providers offer stand-alone notification services,

such as SNS and SQS, but with significant latency and

be costly when used for fine grained coordination.

• Applications themselves manage a VM-based system

that provides notifications, as in ElastiCache and

SAND.

• Applications themselves implement their own

notification mechanism, such as in ExCamera.

Limitation 3: Communication

Broadcast, aggregation, and

shuffle are some of the most

common communication primitives

in distributed systems.

Communication patterns for these

primitives for both VM-based and

function-based solutions.

Note the significantly lower number

of remote messages for the VM-

based solutions. This is because

VM instances offer ample

opportunities to share, aggregate,

or combine data locally across

tasks before sending it or after

receiving it.

Limitation 3: Communication

Case: Distributed Machine Learning

Parameter Server Serverless Parameter Server

Limitation 3: Communication

Feasible Optimization for Communication

(1)Optimizing the storage server

• Current storage services designed for short-running

functions and thus become a performance bottleneck.

• Pocket introduces multi-tier storage including DRAM,

SSD and HDD.

• Locus also combines different kinds of storage devices to

achieve both performance and cost-efficiency for

serverless analytics

(2)Optimizing the communication path

• Optimize the communication path when the relationship

between functions is known in advance.

• Another line of work tries to kick the storage server out of

the communication path with network mechanisms.

Limitation 4: Cold Start

Although cloud functions have a much lower startup latency than traditional VM-based instances,

the delays incurred when starting new instances can be high for some applications.

Three factors impacting cold start latency：
（1）the time it takes to start a cloud function

（2）the time it takes to initialize the software environment

（3）application-specific initialization in user code

Feasible optimization for cold start

• Container cache: When a function is finished, the serverless framework can retain its runtime

environment.

• Pre-warming: OpenWhisk can pre-launch Node.js containers if it has observed that the

workload mainly consists of Node.js-based functions.

• Container optimization: Provide lean containers with much faster boot time than vanilla ones

• Looking for other abstractions: Google gVisor, AWS FireCracker, Unikernel

05

Research Frontier

in Serverless

What Serverless Computing Should Become?

After taking a broad view on increasing the types of applications and hardware that work well with

serverless computing, identifing research challenges in five areas:

（1）Abstractions

• Resource Requirements

• Data Dependencies

（2）Systems

• High-performance, Affordable, Transparently Provisioned Storage

• Coordination/Signaling Service

• Minimize Startup Time

（3）Networking

（4）Security

• Resource Isolation

• Security Monitoring

• Security Management

• Data Protection

（5）Architecture

• Hardware Heterogeneity, Pricing, and Ease of Management

Abstraction Challenge

Resource Requirements

The application developer
memory size

execution time limit

the number of CPUs, GPUs, or other types of accelerators

A better alternative would be to raise the level of abstraction, having the cloud provider infer

resource requirements instead of having the developer specify them.

Methods:

• static code analysis

• profile previous runs

• dynamic (re)compilation to retarget the code to other architectures

The cloud provider

Abstraction Challenge

Data Dependencies

Today’s cloud function platforms have no knowledge of the data dependencies between the

cloud functions, let alone the amount of data these functions might exchange.

Suboptimal placement that could result in inefficient communication patterns.

One approach to address this challenge would

be for the cloud provider to expose an API that

allows an application to specify its

computation graph, enabling better placement

decisions that minimize communication and

improve performance.

System Challenge

High-performance, Affordable, Transparently Provisioned Storage

(1)Serverless Ephemeral Storage

• Such emphmeral storage are needed to maintain application state during the application

lifetime.

• Once the application finishes, the state can be discarded.

• Such ephemeral storage might also be configured as a cache in other applications.

• The speed and latency of the storage system used to transfer state between cloud

functions can be a limitation.

One approach to providing ephemeral storage for serverless applications would be to build a

distributed in-memory service with an optimized network stack that ensures microsecond-

level latency.

• Enable the functions of an application to efficiently store and exchange state during the

application’s lifetime.

• Automatically scale the storage capacity and the IOPS with the application’s demands.

• Provide access protection and performance isolation across applications.

System Challenge

High-performance, Affordable, Transparently Provisioned Storage

(2)Serverless Durable Storage.

• Such emphmeral storage are needed as long term data storage and the mutable-state

semantics of a file system.

• With longer retention and greater durability than the Serverless Ephemeral Storage.

One approach to providing durable storage for serverless applications would be to leverage

an SSD-based distributed store paired with a distributed in-memory cache.

• Transparently provisioned.

• Ensure isolation across applications and tenants for security and predictable

performance.

• Only free resources explicitly (e.g., as a result of a “delete” or “remove” command), just

like in traditional storage systems.

• Ensure durability, so that any acknowledged writes will survive failures.

System Challenge

Coordination/Signaling Service

Some scenarios requiring coordination/signaling service

• Sharing state between functions often uses a producer-consumer design pattern, which

requires consumers to know as soon as the data is available from producers.

• One function might want to signal another when a condition becomes available.

• Multiple functions might want to coordinate, e.g., to implement data consistency mechanisms.

Such signaling systems would benefit from

• Microsecond-level latency

• Reliable delivery

• Broadcast or group communication

Note that cloud function instances are not individually addressable and can’t communicate

directly.

System Challenge

Minimize Startup Time

Three parts of startup time:

(1) Scheduling and starting resources to run the cloud function.

(2) Downloading the application software environment (e.g., operating system, libraries) to run

the function code.

(3) Performing application-specific startup tasks such as loading and initializing data

structures and libraries.

Resource scheduling and initialization can incur significant delays and overheads from creating

an isolated execution environment, and from configuring customer’s VPC and IAM policies. One

approach to reduce (1) is to develop new lightweight isolation mechanisms.

One approach to reduce (2) is leveraging unikernels, being preconfigured for the

hardware they are running on, statically allocating the data structures and including only

the drivers and system libraries strictly required by the application.

To reduce (3), cloud providers can seek to perform startup tasks ahead of time, particularly

powerful for customer-agnostic tasks.

Networking Challenge

Cloud functions can impose significant overhead

on popular communication primitives such as

broadcast, aggregation, and shuffle.

Several ways to address this challenge：
• Provide cloud functions with a larger number

of cores, similar to VM instances.

• Allow the developer to explicitly place the cloud

functions on the same VM instance.

• Let applications provide a computation graph,

enabling the cloud provider to co-locate the

cloud functions to minimize communication

overhead

Note that the first two proposals could reduce the flexibility of cloud providers to place cloud

functions, and consequently reduce data center utilization.

Security Challenge

Root Cause

Industrial Solutions

Literature Work

Research Opportunities

The weakness of lightweight virtualization technologies in

isolation

Secure containers and network boundaries

(e.g., Firecracker, gVisor, and VPCs)

Virtual-machine-based secure containers

(e.g., minimized VMMs and unikernels)

Secure containers with better isolation, better performance, and

lower overhead

Resource Isolation

Security Challenge

Root Cause

Industrial Solutions

Literature Work

Research Opportunities

The ephemerality of functions and the broken boundaries of

serverless applications

Security scanning and monitoring tools

(e.g., Azure Monitor, AWS X-Ray, and DevSecOps tools)

Information flow mining and tracing

(e.g., static analysis and dynamic tracing)

Nonintrusive tracing schemes and advanced insight capabilities

such as diagnosis and forensics

Security Monitoring

Security Challenge

Root Cause

Industrial Solutions

Literature Work

Research Opportunities

The distributed nature of functions and the fragmented

application boundaries

Fine-grained authentication and authorization

(e.g., IAM systems and role-based access control)

Advanced management capabilities

(e.g., workflow-sensitive authorization and secure container

network stacks)

Automatic security configuration and auditing tools

Security Management

Security Challenge

Root Cause

Industrial Solutions

Literature Work

Research Opportunities

Platforms’ control of the function lifecycle and BaaS services’

participation in business logic

Encryption in transit and at rest

(e.g., TLS/SSL, code/data encryption, and key management

services)

Hardware-based trusted execution environments

(e.g., protecting running code with Intel SGX)

Other confidential computing solutions such as homomorphic

encryption

Data Protection

Computer Architecture Challenge

Hardware Heterogeneity, Pricing, and Ease of Management

There are two paths forwarding the demand for faster computation:

• For functions written in high-level scripting languages like JavaScript or Python, hardware-

software co-design could lead to language-specific custom processors that run one to

three orders of magnitude faster.

• Domain Specific Architectures(DSAs) are tailored to a specific problem domain and

offer significant performance and efficiency gains for that domain, but perform poorly for

applications outside that domain (e.g. Graphical Processing Units (GPUs) used to

accelerate graphics, Tensor Processing Units (TPUs) for machine learning).

Two paths for serverless computing to support the upcoming hardware heterogeneity：
• Serverless could embrace multiple instance types, with a different price per accounting unit

depending on the hardware used.

• The cloud provider could select language-based accelerators and DSAs automatically,

implicitly based on the software libraries or languages used in a cloud function (say GPU

hardware for CUDA code and TPU hardware for TensorFlow code) or explicitly monitor the

performance of the cloud functions and migrate them to the most appropriate hardware the

next time they are run.

感谢聆听

	幻灯片 1: Introduction to Serverless Computing
	幻灯片 2
	幻灯片 3
	幻灯片 4
	幻灯片 5
	幻灯片 6
	幻灯片 7
	幻灯片 8
	幻灯片 9
	幻灯片 10
	幻灯片 11
	幻灯片 12
	幻灯片 13
	幻灯片 14
	幻灯片 15
	幻灯片 16
	幻灯片 17
	幻灯片 18
	幻灯片 19
	幻灯片 20
	幻灯片 21
	幻灯片 22
	幻灯片 23
	幻灯片 24
	幻灯片 25
	幻灯片 26
	幻灯片 27
	幻灯片 28
	幻灯片 29
	幻灯片 30
	幻灯片 31
	幻灯片 32
	幻灯片 33
	幻灯片 34
	幻灯片 35
	幻灯片 36
	幻灯片 37
	幻灯片 38
	幻灯片 39
	幻灯片 40
	幻灯片 41
	幻灯片 42
	幻灯片 43
	幻灯片 44
	幻灯片 45
	幻灯片 46
	幻灯片 47
	幻灯片 48
	幻灯片 49
	幻灯片 50
	幻灯片 51
	幻灯片 52
	幻灯片 53
	幻灯片 54
	幻灯片 55
	幻灯片 56
	幻灯片 57
	幻灯片 58
	幻灯片 59
	幻灯片 60
	幻灯片 61
	幻灯片 62
	幻灯片 63

