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Motivation

Huge difference in computing power and model size



Inefficiency of Memory

Model Size

• Parameter 1e9

• Feature Map 2e9

• Gradient 3e9

• Float32 4B

• Total 24GB

Hardware Capacity

• NVIDIA 3070 8G

• NVIDIA 3080 10G

• NVIDIA 3090 24G

What if there is a bigger model?



Single Node vs Distributed



Distributed Methods#1



Distributed Methods#2



Distributed Methods#3



Problem Of Synchronization



Problem Of Synchronization

Assume that the gradients are of 160 MB. In this case it takes 30 ms to send the gradients from all 

3 remaining GPUs to the fourth one (each transfer takes 10 ms = 160 MB / 16 GB/s). Adding 

another 30 ms to transmit the weight vectors back we arrive at a total of 60 ms.

If we send all data to the CPU we incur a penalty of 40 ms since each of the four GPUs needs to 

send the data to the CPU, yielding a total of 80 ms.

we are able to split the gradients into 4 parts of 40 MB each. Now we can aggregate each of the 

parts on a different GPU simultaneously since the PCIe switch offers a full-bandwidth operation 

between all links. Instead of 30 ms this takes 7.5 ms, yielding a total of 15 ms for a synchronization 

operation.



Ring Synchronization

Each GPU connects to a host CPU via a 

PCIe link which operates at best at 16 GB/s. 

GPU also has 6 NVLink connections, each 

of which is capable of transferring 300 

Gbit/s bidirectionally. 

This amounts to around 18 GB/s per link In 

short, the aggregate NVLink bandwidth is 

significantly higher than the PCIe 

bandwidth. The question is how to use it 

most efficiently.



Ring Synchronization

Network can be decomposed into one ring 

(1-2-3-4-5-6-7-8-1) with double NVLink 

bandwidth and into one (1-4-6-3-5-8-2-7-1) 

with regular bandwidth. Designing an 

efficient synchronization protocol in this case 

is nontrivial.



Ring Synchronization

given a ring of n computing nodes we can 

send gradients from the first to the second 

node. There it is added to the local 

gradient and sent on to the third node, and 

so on. After n−1 steps the aggregate 

gradient can be found in the last-visited 

node. O(n)

broke the gradients into n chunks and 

started synchronizing chunk i starting at 

node i. Since each chunk is of size 1/n the 

total time is now (n−1)/n≈1. O(1)



Distributed Methods#4

A server (or servers) to split data, separate 

it and aggregate the global model. 

Many workers with separated data to train 

the separated models. 

Connected by high speed networks



Distributed Methods#4



Asynchronous tasks and dependency

Any push or pull request can be a task, so 

can be a remote function that is executing. 

Tasks are generally asynchronous in nature 

and programs/applications can continue 

executing after issuing the task.



PS vs Bulk Synchronous system



Coordinate of Multi-PS

a single parameter server is a 

bottleneck since its bandwidth is finite. 

multiple parameter servers store parts 

of the parameters with aggregate 

bandwidth.



Consistent Hash



Privacy and Security 
Issues in Deep 

Learning
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Privacy Principles for Learning and Analytics

The challenges are not only due to transporting high-volume, high-velocity, high-veracity, and 

heterogeneous dataacross organisations but also the data protection regulations and restrictions 

such as the EU General Data Protection Regulation (GDPR)



Overview of the Privacy and Security in Distributed learning

prevent insiders at the server from 

conducting inference attacks

prevent Byzantine participants from 

conducting model poisoning



Threats and Attacks

Privacy inference attacks

• Existing work suggested that adversaries can infer different levels of sensitive information from 

the updated gradients

Eavesdropping attacks

• The adversaries located in the communication channel between central server and local 

workers can launch eavesdropping attacks. The adversaries can steal or tamper some 

meaningful information, such as model weights or gradients, in each communication.

Poisoning attacks

• Poisoning attacks on machine learning models have been widely studied. These attacks occur 

in the training phase against FL. On the one hand, adversaries can impair the performance of 

the final global model on untargeted tasks. On the other hand, adversaries can inject a 

backdoor into the final global model.



Strength of Federated 
Learning
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What is Federated Learning?

The term federated learning was introduced in 2016 by McMahan et al： 

• “We term our approach Federated Learning, since the learning task is solved by a loose 

federation of participating devices (which we refer to as clients) which are coordinated by a 

central server.”

A broader defination

• Federated learning is a machine learning setting where multiple entities (clients) collaborate in 

solving a machine learning problem, under the coordination of a central server or service 

provider. Each client’s raw data is stored locally and not exchanged or transferred; instead, 

focused updates intended for immediate aggregation are used to achieve the learning objective



Life Cycle of Federated Learning#1

Problem identification: The model engineer identifies a problem to be solved with FL.

Client instrumentation: If needed, the clients (e.g. an app running on mobile phones) are 

instrumented to store locally (with limits on time and quantity) the necessary training data. 



Life Cycle of Federated Learning#2

Simulation prototyping (optional): The model engineer may prototype model architectures 

and test learning hyperparameters in an FL simulation using a proxy dataset.

Federated model training: Multiple federated training tasks are started to train different 

variations of the model, or use different optimization hyperparameters.



Life Cycle of Federated Learning#3

(Federated) model evaluation: After the tasks have trained sufficiently (typically a few days), 

the models are analyzed and good candidates selected. Analysis may include metrics 

computed on standard datasets in the datacenter, or federated evaluation wherein the 

models are pushed to held-out clients for evaluation on local client data.



Classification

“Horizontal federated learning, or sample-based federated learning, is introduced in the scenarios 

that data sets share the same feature space but different in sample.”



Horizontal data example

With horizontal data, rows of data are available with a consistent set of features. This is exactly the 

type of data you’d feed into a supervised machine learning task.



Classification

“Vertical federated learning or feature-based federated learning … is applicable to the cases that 

two data sets share the same sample ID space but differ in feature space.”



Vertical data example

fictitious high street book 

retailer StoneWater’s have some 

of the same customers as online 

blogging curator Large (also totally 

fictitious) and capture different 

features such as book 

‘Title’,‘Category’, ‘Author’ from 

each purchase.



Classification

“Transfer federated learning  is applicable to the cases that two data sets share some same sample 

ID space and feature space.”



Data Centric Federated Learning

This is a newer, emerging type of Federated Learning, and in some ways may be outgrowing the 

Federated term, having a more peer-to-peer feel.

An owner, or in future — owners, of private data can provide access for external organisations to 

build models on their data without sharing that data.



Comparison



Strengths



Strengths 

FL enables devices like mobile phones to collaboratively learn a shared prediction model while 

keeping the training data on the device instead of requiring the data to be uploaded and stored 

on a central server.

Moves model training to the edge, namely devices such as smartphones, tablets, IoT, or even 

“organizations” like hospitals that are required to operate under strict privacy constraints. 

Makes real-time prediction possible, since prediction happens on the device itself. 

Since the models reside on the device, the prediction process works even when there is no 

internet connectivity.

FL reduces the amount of hardware infrastructure required.



Various technologies for Privacy

Technologies Characteristic

Differential Privacy (local, central,

shuffled, aggregated, and

hybrid models)

A quantification of how much information could be learned about

an individual from the output of an analysis on a dataset that 

includes

the user. Algorithms with differential privacy necessarily

incorporate some amount of randomness or noise, which can be

tuned to mask the influence of the user on the output.

Secure Multi-Party Computation Two or more participants collaborate to simulate, though 

cryptography,

a fully trusted third party who can:

• Compute a function of inputs provided by all the participants;

• Reveal the computed value to a chosen subset of the 

participants,

with no party learning anything further.



Various technologies for Privacy

Technologies Characteristic

Homomorphic Encryption Enables a party to compute functions of data to which they do

not have plain-text access, by allowing mathematical operations to

be performed on ciphertexts without decrypting them. Arbitrarily

complicated functions of the data can be computed this way

(“Fully Homomorphic Encryption”) though at greater computational

cost.

Trusted Execution 

Environments

(secure enclaves)

• Confidentiality: The state of the code’s execution remains

secret, unless the code explicitly publishes a message;

• Integrity: The code’s execution cannot be affected, except

by the code explicitly receiving an input;

• Measurement/Attestation: The TEE can prove to a remote

party what code (binary) is executing and what its starting

state was, defining the initial conditions for confidentiality

and integrity.



FedAvg Algorithm
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Key Properties

Non-IID 

• The training data on a given client is typically based on the usage of the mobile device by a 

particular user, and hence any particular user’s local dataset will not be representative of the 

population distribution.

Unbalanced 

• Similarly, some users will make much heavier use of the service or app than others, leading to 

varying amounts of local training data.

Massively distributed 

• We expect the number of clients participating in an optimization to be much larger than the 

average number of examples per client.

Limited communication 

• Mobile devices are frequently offline or on slow or expensive connections.



Objective Function

fi(w) =l(xi; yi;w), that is, the loss of the prediction on example (xi; yi) made with model parameters w.

We assume there are K clients over which the data is partitioned, with Pk the set of indexes of 

data points on client k. Thus, we can re-write the objective



From SGD to FedAvg



Test Result

• Test set accuracy vs. communication 

rounds for the MNIST CNN (IID and then 

pathological non-IID) and Shakespeare 

LSTM (IID and then by Play&Role) with

• C = 0.1 and optimized η.



Federated Learning Protocol



Actor Model of FL

Coordinators 

• The top-level actors which enable global 

synchronization and advancing rounds 

in lockstep. 

• There are multiple Coordinators, and 

each one is responsible for an FL 

population of devices.



Actor Model of FL

Selectors

• Responsible for accepting and forwarding 

deviceconnections. 

• They periodically receive information from the 

Coordinator about how many devices are 

needed for each FL population, which they use 

to make local decisions about whether or not 

to accept each device.



Actor Model of FL

Master Aggregators

• Manage the rounds of each FL task.

• In order to scale with the number of 

devices and update size, they make 

dynamic decisions to spawn one or more 

Aggregators to which work is delegated.



谢谢！
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