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FedAvg algorithm

Background

* Recently, attributed to the collection of massive data from users or organizations, Al
has been thriving for years.

 However, some private data is also collected during data collection, such as the
shopping behaviors, facial images, house locations, etc.

» Data breach is becoming more and more severe, and many governments have
iIssued data privacy protecting laws.
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Background

« Al model training based on distributed computing and edge computing is required.

EDG
EDGE DEVICES NODES
(user gadgets -
(routers,

mobiles, :
switches,
Smartphones,
small/macro

music players, 5
kb base stations)
wearables,

game controllers etc) !
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Background

 Different from traditional settings, data cannot be collected and naturally exists locally.
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Fig. 3. Architecture for a horizontal federated learning system
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FedAvg algorithm

Contributions

« Consider the problem of training dispersed data from mobile devices as an important
research direction.

* Propose a simple and practical algorithm for Federated Averaging.

« An extensive empirical evaluation of the proposed algorithms shows that they are
robust to non-independently identically distributed (Non-IID) and unbalanced data.
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FedAvg algorithm

Federated learning review

» Learning tasks are handled by a loose federation of participating devices (clients)
coordinated by a central server.

Global -1
model

Server Server

Local
models

{ 11l 1rJ 111 111
Worker Worker Worker Worker

t t t t

data
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FedAvg algorithm

Federated learning review

« Each client has a local training data set that does not need to be uploaded to the
server and only sends local model parameters for each update.

Central Server
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FedAvg algorithm

Federated learning (FL) review: ideal FL

 Training on real-world data from mobile devices has distinct advantages over the
proxy data that is ubiquitous in data centers.

» This data is privacy-sensitive or large (compared to the size of the model) to avoid
recording it to the data center for model training.

» For supervised tasks, labels on data can be naturally inferred from user interactions.
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FedAvg algorithm

Federated learning (FL) review: privacy

* In the traditional distributed training setting, even if an "anonymous" data set is held,
users' privacy will be threatened through the connection with other data.

* |n contrast, the information transmitted in FL is the minimum update (all/part of the
model parameters) needed to improve a particular model, and less information means
a lower risk of privacy disclosure.

« Combining FL with secure multi-party computing and differential privacy.
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FedAvg algorithm

Federated settings

* Non-IlID data: Training data on a given client is usually based on mobile device usage
by a particular user, so any local data set for a particular user does not represent a
group distribution.

* Imbalance: Some users will use the service or application more than others, resulting
in different amounts of local training data.

« Massive clients: We expect the number of clients participating in the FL to be much
larger than the average number of instances per client.

 Limited communication: Mobile devices are often offline or in a slow or expensive
connection.
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FedAvg algorithm

Objective

miley ) hiers f('w)ziz fiw). D)

weRd

nk

flw) = Z ;Fk(w) where Fy(w) = nik Z fi(w).
k=1 1€Pk

K number of clients
P the distribution of local data
N the number of local data samples
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FedAvg algorithm

Limited communication

 |In data center optimization, communication costs are relatively small while computing
costs dominate, and recent emphasis has been on using GPUs to reduce these costs.
In contrast, in joint optimization, communication costs dominate -- we're typically
limited by upload bandwidth of 1MB/s or less.

 Clients typically volunteer for optimization only when charging, plugging in, and using
a non-billable Wi-Fi connection, and we expect each client to participate in a small
number of update sessions per day.

 Modern smartphones have plenty of local computing power and small datasets
on a single device.

/\T\J%‘i%ﬁdﬁ L
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FedAvg algorithm

Reduce communication
 Increasing parallelism, that is, using more clients to work independently between
rounds of communication.

« Add computations per client, that is, perform more complex computations (such as
cumulative training) between rounds of communication.

/\T\J%’Z%ﬁdﬁ L
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FedAvg algorithm

Federated Averaging

Algorithm 1 FederatedAveraging. The K clients are
indexed by k; B is the local minibatch size, E' is the number

of local epochs, and 7 is the learning rate.

Server executes:
initialize wq
for eachroundt =1,2,... do
m + max(C - K, 1)
S; < (random set of m clients)
for each client k£ € S; in parallel do
wy,  + ClientUpdate(k, w;)

Wetl & D hes n Wil

Client amount

Batch size

Local training rounds

Local learning rate

ClientUpdate(k, w): // Run on client k
B + (split Py, into batches of size B)
for each local epoch ¢ from 1 to £ do

for batch b € B do
w — w — nVL(w;b)
return w to server

m%ig\fﬂjﬁ L
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FedAvg algorithm

Federated Averaging

* |t is beneficial to initialize local models with the common start point

* Mixed weight = 0w + (1 - )W’

loss

1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4

Independent initialization

).20.0 0.2 0.4 0.6 0.8 1.0 1.
mixing weight 4

loss

Common initialization
0-54 E | 1 | 1 1 T ]

D.a2
0.50
0.48
0.46
0.44
0.42
0.40

—0.20.00.2040.60.81.01.2
mixing weight #

/\T\J%’Z%ﬁdﬁ

17



FedAvg algorithm

Experiments
* Image classification: MNIST handwritten digital recognition

« Language modeling: Dataset based on the Complete Works of William Shakespeare

/\T\J%’Z%ﬁdﬁ L
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FedAvg algorithm

Experiments (MNIST)
« |ID: shuffling the data and dividing it into 100 clients, each receiving 600 examples.

* Non-1ID: (1) sort the data by number label; (2) divide it into 200 shards of size 300; (3)
assign 2 shards to each of the 100 clients, most clients will have only two number

examples.

/\T\J%’Z%ﬁdﬁ L
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FedAvg algorithm

Experiments (MNIST)

* 1) A simple multilayer-perceptron with 2-hidden layers with 200 units each using
RelLU activations (199,210 total parameters), which we refer to as the MNIST 2NN.

O
=

Input neurons Hidden layer Hidden neurons Hidden layer ~ Output neurons
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FedAvg algorithm

Experiments (MNIST)

* 1) A simple multilayer-perceptron with 2-hidden layers with 200 units each using
RelLU activations (199,210 total parameters), which we refer to as the MNIST 2NN.

class FedAvgMLP(nn.Module

def
super

def
if

return

nn
nn
nn

True

/\T\J%‘i%ﬁdﬁ
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FedAvg algorithm

Experiments (MNIST)

« 2) ACNN with two 5x5 convolution layers (the first with 32 channels, the second with
64, each followed with 2x2 max pooling), a fully connected layer with 512 units and
RelLU activation, and a final softmax output layer (1,663,370 total parameters).

class FedAvgCNN(nn.Module
def
super
nn.Sequential
nn.Convad

True
nn.RelLU True
nn.MaxPool2d

/\T\J%‘i%ﬁdﬁ L
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FedAvg algorithm

Experiments (Key hyperparameters)

« C: Proportion of clients participating in calculation: 1 indicates that all clients
participate in training

« E: Number of training cycles per client between two communications

« B: Mini-batch size of each client. « indicates full-batch

. = —: The total number of updates in each iteration on client

/\T\J%’Z%ﬁdﬁ
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FedAvg algorithm

Experiments (communication rounds)

2NN NON-IID

C B = oo B =10 B = oo B =10
0.0 1455 316 4278 3275

0.1 1474 (1.0x) 87 (3.6x) 1796 (2.4x) __ 664 (4.9)
0.2 1658 (0.9x) 77 (4.1x) 1528 (2.8x) _ 619 (5.3x)
0.5 — (—)  75(4.2x) —  (—) 443 (7.4x)
1.0 — (=) 70 (4.5%) — (=) 380 (8.6x%)
CNN, E =

0.0 387 50 1181 956

0.1 339 (1.1x) 18 (2.8%) 1100 (1.1x) 206 (4.6%)
0.2 337 (1.1x) 18 (2.8%) 978 (1.2x) 200 (4.8x)
0.5 164 (2.4x) 18 (2.8x) 1067 (1.1x) 261 (3.7x)
1.0 246 (1.6x) 16 (3.1x) — (=) 97 (9.9%)

C: Proportion of clients participating in calculation
E: Number of training cycles per client between two communications

B: Mini-batch size of each client. « indicates full-batch

—: The total number of updates in each iteration on client

C = 0.1 is the best

/\“m%@ﬁdﬁ
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FedAvg algorithm

Experiments (communication rounds)

MNIST CNN, 99% ACCURACY

CNN E B U IID NoN-IID
FEDSGD 1 o 1 626 483
FEDAVG 5 5 179 (3.5x) 1000 (0.5x)
FEDAVG 1 50 12 65 (9.6x%) 600 (0.8x)
FEDAvG 20 oo 20 234 (2.7x) 672 (0.7x)
FEDAVG 1 10 60 34 (18.4x) 350 (1.4x)
FEDAVG 5 50 60 29 (21.6x) 334 (1.4x)
FepAve 20 50 240 32 (19.6x) 426 (1.1x) - C = -
FEDAVG 5 10 300 20 (31.3x) 229 (2.1x) FedSGD: C _1 a_nd Full
FEpAvG 20 10 1200 18 (34.8x) 173 (2.8%) Batch Optimization
SHAKESPEARE LSTM, 54% ACCURACY
LSTM E B U IID NoN-IID FedAvg: C=01
FEDSGD 1 oo 1.0 2488 3906
FEDAVG 1 50 1.5 1635 (1.5x%) 549 (7.1x)
FEDAVG 5 o 5.0 613 (4.1x) 597 (6.5%)
FEDAVG 1 10 7.4 460 (5.4x) 164 (23.8x)
FEDAVG 5 50 7.4 401 (6.2x) 152 (25.7x)
FEDAVG 5 10 37.1 192 (13.0x) 41 (95.3x)

C: Proportion of clients participating in calculation
E: Number of training cycles per client between two communications
B: Mini-batch size of each client. « indicates full-batch

= —: The total number of updates in each iteration on client

/\“m%@ﬁdﬁ L
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Experiments (training loss curves)

MNIST CNN n =0.215 1ID MNIST CNN n =0.1 Non-IID
o X
= — E=f e | E=1
— E=5 - E=5
S E=25 E=25
w0 - — E=50 8 E=50
=} — E=100 & E=100
——  E=200 E=200
_ ——  E=400 E=400
28 _ S -
Sz So
£ [~
g - =
[ o
Q
Q- 3
= o
_ \
To]
g g
& © N | | T I |
0 20 40 60 80 100 0 20 40 60 80 100
Communication Rounds Communication Rounds

C: Proportion of clients participating in calculation, C=0.1
E: Number of training cycles per client between two communications
B: Mini-batch size of each client. B=10.

= —: The total number of updates in each iteration on client
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Experiments (training loss curves)

n=1.471D n =1.47 Non-IID by Play&Role
Q o Q- E=1
[a1] o E-5
© © E=25
®Q - < E=50
E=100
9 = © _| E=200
w w
EAR gx 1
& & LSTM
o ©
o o
o (=2
I T I T T T 1 T T T T ] [ 1
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Communication Rounds Communication Rounds

C: Proportion of clients participating in calculation, C=0.1
E: Number of training cycles per client between two communications
B: Mini-batch size of each client. B=10.

= —: The total number of updates in each iteration on client
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MOON algorlthm -

 Observation
« Contrastive learning

- MOON
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Observation

* The global model trained on a whole dataset can learn a better representation than the local
model trained on a skewed subset.

class ID ”
L ]

L BN N N
(=R RN I R R S =1

(a) global model (b) local model

(c) FedAvg global model (d) FedAvg local model

Figure 2. T-SNE visualizations of hidden vectors on CIFAR-10. /\V[\QW?—S JT m
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MOON algorithm

Observation

* The global model trained on a whole dataset can learn a better representation than the local
model trained on a skewed subset.

* Propose model-contrastive learning (MOON), which corrects the local updates by maximizing

the agreement of representation learned by the current local model and the representation
learned by the global model.

/\T\J%‘i%ﬁdﬁ
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MOON algorithm

Contrastive learning

« The key idea of contrastive learning is to reduce the distance between the representations of
different augmented views of the same image (i.e., positive pairs), and increase the distance
between the representations of augmented views of different images (i.e., negative pairs)

exp(sim(x;, z;)/T)

Zii Iiksa) exp(sim(zs, Tx)/7)

li}j = — lf)g

/\T\J%’Z%ﬁdﬁ L
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MOON algorithm

MOON
« Global representation  Zgiob = Ryt (x)
. Local representation W, = (i-€., Zprey = R, -1 (x))

» Current representation z = wa(gf:)

exp(sim(z, Zg10p)/T)
exp(sim(z, 2g10p)/T) + exp(sim(2, Zprev)/T)

Econ — = IOg

L = Loup(wh; (2, 1)) + pleon (W wi™t; wh; ),

mian(:r,y)wDi [g.ﬂup(w;f; (:Br y))+ #Ecoﬂ(wg; w§_1 ; wt; m)]

wy

/\T\i"%‘i@ﬁdﬁ L

32




MOON algorithm

MOON

Algorithm 1: The MOON framework

Input: number of communication rounds 7T,
number of parties N, number of local
epochs E, temperature 7, learning rate 7,

hyper-parameter x

Output: The final model w’

Server executes:

initialize w

0

fort=0,1,....,7T — 1do

w

return w

t+1

7 &

for: =1.2,.... N in parallel do
send the global model w' to P,
w! + PartyLocalTraining(i, w")

9 PartyLocalTraining(i, w'):
10 w!  w
11 forepoch?=1,2,..., F do

12
13

14

15
16

17

18
19

for each batch b = {z, y} of D* do

Csup — CrossEntropyLoss(F,:(x),y)
z < Ryt(z)

Zglob — th ($)

Zgrew R p=1(Z)

ECO’H <_

exp(sim(z,zg10b)/T)
exp(sim(z,2g4i0b)/7T)+exp(sim(z,zprev)/T)

£ 4 Lain + Bl oo
wi « wi —nVeL

— log

20 return w! to server

Jaas—utan
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FedDyn algorlthm -

e Intuition
 FedDyn

 Analysis
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FedDyn algorithm

Intuition

* Training models on local data that minimize local empirical loss appears to be meaningful, but
yet, doing so is fundamentally inconsistent with minimizing the global empirical loss.

« Dynamically modify the device objective with a penalty term so that, in the limit, when model
parameters converge, they do so to stationary points of the global empirical loss.

/\T\J%‘i%ﬁdﬁ
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FedDyn algorithm

FedDyn

Algorithm 1: Federated Dynamic Regularizer - (FedDyn)

Input: 7,60", o« > 0, VL,(6)) = 0.
fort=1,2,...7T do

Sample devices P; C [m] and transmit 8° ' to each selected device,
for each device k € 'P., and in parallel do

Set ﬂt: — argl'rbin L (0) — <VL;G(9§:1), 0) + %HG — Qt_1||2,

Set VL(0,) = VL,(6; ") —a (6, — 6",
Transmit device model 9; to server,

end for
for each device k & Py, and in parallel do
| Set@, =6, ', VL(0))=VL.(6,").
end for
t g t t—1
Seth =h —a}n (Zkept 6, —0 )

Set 6" = (&1 Tyep, 61) — Lh!
end for

7 | HJT@
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FedDyn algorithm

® Analysis

0! = argmein [ﬁ{h(ﬁ;ﬂi_l,ﬁt_l) = Li(0)|- (VLR(QE_I):.B) + %Hﬁ' — 9HHQ}

* The first order condition
VLi(0y) — VLi(0; ) +a(6,—0"7")=0

* If local device models converge, they converge to the server model, and the convergence
point is a stationary point of the global loss.

if @, — 07°, it generally follows that, VL (0}.) — VL (07°), and as a consequence, we have
0" — 6:°. In turn this implies that 87° — 6°°, i.e., is independent of k.

/\T\i"%‘i@ﬁdﬁ L
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KT-pFL algorlthm -

* |ntuition

 Knowledge Distillation (KD)

. KT-pFL
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KT-pFL algorithm

Intuition
« Main idea is to allow each client to maintain a personalized soft prediction at the server that
can be updated by a linear combination of all clients local soft predictions using a knowledge

coefficient matrix.

« Regardless of model structures

/\T\J%’Z%ﬁdﬁ L
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KT-pFL algorithm

Knowledge Distillation (KD)

« Transfer knowledge from well-learned teacher model to student model

Teacher Model

/Tf\i‘%‘i@ﬁdﬁ L
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KT-pFL algorithm

Knowledge Distillation (KD)

e Classification

Relation-Based Knowledge

e ' T HintLayers
:
---------- I ‘ I e
:' Input Lar . ‘k‘ﬂ | ! Output Layer) E
N fw‘?ﬁ - : %
| | Data RIS XN a
| PSPPI SARA e
: S0, ' &
VT 7N I |2
-1 RO B
|
I_ ________________ J
Distill J’
’ Feature-Based Knowledge Response-Based Knowledge

/Tf\i‘%‘i@ﬁdﬁ
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KT-pFL algorithm

Knowledge Distillation (KD)

 Response-based KD

——;

Distillation

Data
Loss

/Tf\i‘%‘i@ﬁdﬁ L
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KT-pFL algorithm

KT-pFL
* Objective

N
D,
min £(w) = ) _ —Ln(w), where L,,(w) = Lop(W:zi,yi).

n=1 i=1

/\T\i"%‘i@ﬁdﬁ L
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KT-pFL algorithm

KT-pFL
» Personalized loss function
» Kullback—Leibler (KL) Divergence
. is the knowledge coefficient which is used to estimate the contribution from client m to n.

A

. , can be deemed to be a soft prediction of the client n

N
Lpermn(W") i= Lo(w") + A Z Lkr (Z B s(W', ), S(w”,:?:))
m=1

reD,.

n sy — _ exp(z/T)
ES:l exp(z2/T)’

/\T\J%’Z%ﬁdﬁ L



KT-pFL algorithm

KT-pFL

« Knowledge coefficient matrix

C11 C12 v+ CIN

C21 Cog +++ CanN
c =

CN1 CnN2 ' CNN

/\T\i"%‘i@ﬁdﬁ L
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KT-pFL algorithm

KT-pFL
* Objective

N
= z Lper,n(W" ‘+‘P||‘3’“_||2

n=1

W = [le--- ,WN] ERZE:ldﬂ

/\T\i"%‘i@ﬁdﬁ L
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KT-pFL algorithm

KT-pFL
 Training
 Update w W — W — 1 Vr Lo (W £),
* Local Training
« Distillation N
« Update c W' = W' = Vwn LKL (Z C-:;i.T -s(w'™, &), s(W", Sfr))
m=1

N N
D'ﬂ- T, * T, * 1
e ?}'3/\ E FVCEKL ( E Cm - S(W 1 :‘S?*)a S(W 7 :gr‘)) - QHSP(C o E)

n=1 m=1

/\T\i"%‘i@ﬁdﬁ L
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KT-pFL algorithm

KT-pFL

Algorithm 1 KT-pFL Algorithm

Input: D, D,, 1, ﬂg T}g and T’
Output: w = [w!, -, w']

1: Initialize wy and Co

2: procedure SERVER-SIDE OPTIMIZATION

3 Distribute wg and ¢ to each client

4 for each communication round t € {1,2,...,7} do
5: for each client n in parallel do
6.
7
8

w1 + ClientLocalUpdate(n, wi, c; )

Update knowledge coefficient matrix c via (7)
Distribute c; . to all clients

9: procedure CLIENTLOCALUPDATE(n W', Ct.n)

10: Client n receives w}' and c,, from the server

11s for each local epoc:h i from 1 to E do

12: for mini-batch £ C D, do

13: Local Training: update model parameters on private data via
14: for each distillation step 7 from 1 to 1R do

15: for mini-batch £, C D, do

16: Distillation: update model parameters on(p

return local parameters w}'
- =gl




KT-pFL

e |llustration

_______________________________________

oR PR @

- @i = [I Labels) || D(Labels)

: I = ] =" L |

— l O— ! —> !

@@ | @@ | e |

I | ]

- | _— | . |

_________________ Client 1 SOUedeton 1 Clinta SOUPedim b clieney  Sotfredenon

Figure 1: Illustration of the KT-pFL framework. The workflow includes 6 steps: @ local training
on private data; @, @ each client outputs the local soft prediction on public data and sends it to the
server; @ the server calculates each client’s personalized soft prediction via a linear combination of
local soft predictions and knowledge coefficient matrix; ® each client downloads the personalized
soft prediction to perform distillation phase; ® the server updates the knowledge coefficient matrix.

s 0 NETS

sl



o

i)
-

1 | |
FedMA algorithm -

* Permutation invariance

 Matched averaging formulation

* FedMA

/\T\i"%‘i@ﬁdﬁ L




Permutation invariance

v

wi w2

/\T\i"%‘i@ﬁdﬁ L
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W
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>
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FC,
e H W. H

FC,

Pool inj FC, &
o [ 1 w 7 )
Poolinj FCo A
o ) ﬂTWz )/

y = o(xW H)HTWQ, where Il is any L X L permutation matrix.

/\“m%@ﬁdﬁ
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FedMA algorithm

Permutation invariance (fully-connected (FC) layer)

Client A: Client B:
{Wlﬂj,H?WQ} {Wll_[jf,Hg:Wz}
Aggregation

(Wlﬂj o= Wlﬂjf)/2 7é W1H for any 11

Solution: (Wlnjﬂf{ + Wlﬂjfﬂg:)/Q = W

/\“m%@ﬁdﬁ L
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FedMA algorithm

Permutation invariance (FCs)

Nth 'a,er

FCn Poalinj
e w1 o

Simple FCs: 4 = o(zW, DI W5

Deep FCs: =z, = o(z,_1IIZ_,W,I1,.)

/\“m%@ﬁdﬁ L
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Permutation invariance (FCs)

client

Global model

client

Global model

T
wH -
8| ——_%
Tl-nﬂ
Tl
T - -

/\T\i"%‘i@ﬁdﬁ
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FedMA algorithm

Permutation invariance (CNN)

FC Lp = J(“Tn—lﬂg_lwnﬂn)

CNN: =z, =o(Conv(z,_1,IIL_,W,II,))

/\T\i"%‘i@ﬁdﬁ L
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FedMA algorithm

Permutation invariance (recall)

Client A: Client B:
{Wlﬂj,H?WQ} {Wll_[jf,Hg:Wz}
Aggregation

(Wlﬂj o= Wlﬂjf)/2 7é W1H for any 11

Solution: (Wlnjﬂf{ + Wlﬂjfﬂg:)/Q = W

/\“m%@ﬁdﬁ L
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FedMA algorithm

Matched averaging formulation
Client Madlel ( truined on datase j ) Global  Modef
WiTT = 6

Iayer Wj & > la)rer 9

[wi|wi|wp] [a]e]6,]

which 9 /|\

min C('WJpGi)

i€{1,2,3}

7
min Z Z I%in 'J’I'fz-C(wjg,, 6;) s.t. Z ﬂ'f:i = 134 wai =1¥7.J
toph =1 50 i .!
7T ~=rsutull |
1)




FedMA algorithm

Matched averaging formulation
Cliest Moclel ( trained on dﬂwetj) Globa|  Model

Ia)m‘ w j ]a/er 9

[y | W[ wp] [o]6]s,]

which 2 T

_ min C(Wj.08i) > &
3 | € E,LL] I'E{LLB} J1
Lj"U'fLJJ

Afmr a&are,ja.tion 5 [e’l ’ 0. I 8_; lw\jizl

L—f—Ljr Lj!
{1?1;1 Z Zﬂfz - st Z’/Tf% = 1 Zﬁf% € {0,1} Vi, where
s b =1 j=1 i l

Cj’_ c(wjrg,é?z-), 1% L
" e+ f(i), L<i<L+Lj.
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FedMA algorithm

FedMA (https://github.com/IBM/FedMA)

Client 1 W, > - LS L.
Client 2 W, —> .- L% 5 . s
Clieat 3 W R T
client 4 W —> - L% . .

L Aggregation
center 6.

/\“m%@ﬁdﬁ L
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FedMA algorithm

FedMA (https://github.com/IBM/FedMA)

. T
Client 1 O T w, A —F R
. T

client 2 T —H -
. T

client 3 T w = = 15
. T

client 4 O —> - - % 0
center ea
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FedMA algorithm

FedMA (https://github.com/IBM/FedMA)

[rozen
Clieat 1 o HHwW > il
Clieat 2 NaimCA > .
clieat 3 ™ i T
Clieat 4 B > el 574
l Aggregation
center B, ﬁz,
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FedMA algorithm

FedMA (https://github.com/IBM/FedMA)

Frozen Frozen

Clieat 1 8, 8- H wi > S .
client 2 o, HH o.FHwH s,
client 3 o, HH & HHw s,
client 4 O W -

l Aggregation
center 9. ﬂ). 83
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FedMA algorithm

FedMA (https://github.com/IBM/FedMA)

Algorithm 1: Federated Matched Averaging (FedMA)

Input : local weights of N-layer architectures {W, 1,..., W} N}},{:l from .J clients
Output: global weights {Wy,..., Wy}
= 1ig
while n < N do
if n < N then
{II;};_, = BBP-MAP({W; ,}/_,) ; // call BBP-MAP to solve Eq. 2
Wn — % Zj Wj,nﬂ?;
else
W, = Zle 5 j pik Wi » where py. 1s fraction of data points with label k£ on worker j;
end
forj € {1,...,J}do
Wint1 < ILW; ni s // permutate the next-layer weights
Train {W, 41, ..., W; .} with W, frozen;
end
n=n-4+1;
end

/\T\i"%‘i@ﬁdﬁ
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1 “ N\ A
Sageflow algorith -

« Staleness-aware grouping

 Entropy-based filtering

 Loss-weighted averaging
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Sageflow algorithm

Stragglers: slow devices
« Keep waiting: slow down the overall process
* Drop out: important data missing

« Asynchronous(staleness): + adversaries?

® Attackers: malicious attacks launched by adversaries

« untargeted attacks: model poisoning, data
poisoning

 targeted/backdoor attacks: misclassify the
targeted subtasks

* Robust Federated Averaging & Multi-Krum

 Large portion of adversaries

« Straggler: increase attack ratio

Server A | @ Sending encrypted gradients |

o

| (2) Secure aggregation |

| @ Sending back model updates |

@ ® Updating models
” ® ||® S
@?
X

] _

Database B, Database B, Database B,

—

50

o g

S A LS S O S S S S SN S S S O S S
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Staleness-aware grouping

Entropy-based filtering + Loss-weighted averaging

St

St—1

AR

. L e L
(0] ] i (D)
D 'tri ’ | 'r-"rl: :
: - |
D ii |
Received at ROSTSNT, ISTRPS SIS |
global round o Uf[_r_—]l,'l D L{[L 1)§|
| ] :
Received at Ig D [ ,“: |
global round t-1 1 D |
:
4o
Received at
global round ¢

Server

&

| Loss weighted

Entropy
based
filtering

averaging

L
Werr = (1 =)W, + ¥ Z al (v,

=0

Averaging

(Wep, t+1)
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eflow algorithm

Staleness-aware grouping

« perform periodic global aggregation(fixed time
deadline)

« allow stragglers to be aggregated in later rounds

« group with same staleness -> group
representative model

« aggregate according to staleness

Staleness group Number of data samples
keU® 2ekeu(® M

wipi = (L—7)we +7 ) _ o’ (A

b'f.— 19

RS

-5'.: b

0! (0]
D 'tri | L'r( :
D {E |
Received at S B
obal round o r(t—1; A(t=1)
gl 1t I 7 i
| [] :
Received at j D U}f : |
global round t-1 | D |
| J |
Received at
global round ¢

Str1<

=0

)VEBI

Z: 0 ‘1’?) (}‘)VEBI

. (i) T
o (V) o« =3

Staleness function

7 VU N\TF=TSJT
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Sag low algorithm Server

t
- | Loss weighted o (£) ¢ 73 (E)
f—@— = ave?aghg Weer = (1 = yIw; + F;“t (j)le
Entro
. hasedw Averaging
 Public data on server filtering

Entropy-based filtering

* Filter out high entropy models (loss) . 0 0
El'pub,j (k) =5 Zq:l Pﬂﬂgumj (k) log Pﬁggubfj (k)

MNpub
1 r
E(k) = E Shannon
( ) Npub jl entropy

* For model poisoning

25

21 e Nverili v 207 — Adversarial device|]
215 — Adversarial device —Benign device w 15t Do device
o —Benign device 24
E 1t =) 10t
L

W . — Adversarial device
n ] ] . . | . 0 . |—Benign device 0 I i :
20 40 60 80 100 50 100 0 20 40 60 0 20 40 60
Global round Global round Global round Global round

(a) Model poison, entropy  (b) Model poison, loss  (c¢) Data poison, entropy (d) Data poison, loss
2 B N eV R R U1 |




Sagef algorithm

« Loss-weighted averaging

. . . , (k) 5
» Aggregation weight according to local models B (9) o 1

measured qualities

* Measure by loss on public data

mg

Fpu (Wt

O 3 AV () =1.

kES;

Wi = Z ﬁ(k)

» data-poisoned model -> small weight + less impact

* For data poisoning & scaled backdoor

|~ Loss we ighted

averaging

Entropy
based
filtering

keS,

t
weer = (1= Pwe + v ) a@v,

=0

Averaging
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Sageflow algorithm

_ _ Public Model Clients
® Time complexity data parameters number

Onpus|w|K)

Algorithm 1 Proposed Sageflow Algorithm

Input: Initialized model wgy, Output: Final global model wr
Process at the Server

1: for each global round ¢t =0,1,...,7 — 1 do

2:  Choose S; and send the current model and the global round (wy, ¢) to the devices

3 Wait for 7z and then:

4. for:=0,1,....,tdo

5: U (Ew) = {k e UP|E(k) < Ew} I/ Entropy-based filtering in each group

6 vgfﬁl = zkeUf“(Em) BY¥) (§)w: (k) /I Loss-weighted averaging in each group (with same staleness)

7 end for ‘ ‘

8: Wiy = (1l—Ywe+7135, ai”(,\)vﬁﬂl // Averaging of representative models (with different
staleness)

9: end for

Process at the Device: Device k receives (w;, t) from the server and performs local updates to obtain w (k).
Then each benign device k sends (w;(k), t) to the server, while a malicious adversary sends a poisoned model

depending on the type of attack.
/1 ~r=esutull 1




Theoretical Analysis

F(z) < F(y) + VF(2)" (z—y)— & ||lz—y||?

Convergence analysis o n -
F(zx) > F(y)+VF(z)" (z—y) — 3 llz — vl

» Assumption 1: y-strongly convex + L-smooth
« Assumption 2: unbiased estimation

| E||V Fy.(wi(k), & (k) — VF(wi(k))|12 < pr
@® Theoretical bound

E[F(wr) — F(w") @F (wo) — F(w*)] €1 —vT)Z (@

Convergence speed Error
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Sageflow algorithm

Datasets: MNIST, FMNIST, CIFAR10
* 2% as public data

Models: CNN(2conv+2fc), CNN(2conv+1fc), CNN(VGG-11)

* ignore batchnorm

FL setting: 100 clients, two classes for each client, 5 local epochs, batch size of 10
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Sageflow algorithm

Only stragglers: 10% participants

Baselines: FedAvg(waiting, ignoring, waiting 50%), FedAsync
Settings: uniform delay of [0,1,2] global rounds

Ignoring lose significant data converges to a suboptimal point

® Waiting(all, 50%) requires the largest running time until convergence

100 - - - - 90 70 1
Ml 80 60
> 30} = oy L
< BOT —— Safeflow (Ours) 5 i 25wk
W — Fodfsyc 2 el ——Safeflow (Ours) @ 30
ﬁ 50 lgnore stragglers + FedA = ——FedAsync - lgnore stragglers + FedAvg
— Wkt ko dbacons + FodAvg 40 c s R * T AN
40 + i —Wai ——Wait for partial stragg| FedA
— Wait for partial stragglers + FedAvg _WE!t fox s’rragglers + Fodivg 10 AL DT PANAL STEg s » rg
30 L, : : : ; 30 Wait for partial stragglers + FedAv

0 20 40 60 80 0 20 40 60 80 100 0 200 400 600 800 1000 1200

Running time Running time Running time
rull |

| (a) MNIST (b) FMNIST (c) CIFARIO




Sageflow algorithm

Only adversaries: 20% participants

Baselines: RFA, FedAvg, synchronized Zeno+, Multi-Krum

® Attacks: model(-0.1w), data(label-flipping), backdoor(model replacement, pixel-pattern attack)
FedAvg does not work well on all datasets ® Zeno+: bad on poisoning but good for backdoor

RFA: complex model led to worse performance Sageflow: slow down posioning

100 r - 90 - v 70 v
80+ &0 |
80+ ] 20l |
oy o) - |
o ——Sageflow (Ours) _ T 60f - o sy
3 60 ——RFA =3 f ——Sageflow (Ours) o
8 8 50| — L AFA 1 8 40 ——RFA
o FedAvg © I i © FedAvg
= | —Zeno = vg g —
g 4 : g ™ ——Zeno+ &30t Zeno+
— = a3 [
20 2 20
. : 10 : : 10 . . : - :
0 50 100 150 0 50 100 150 0 200 400 600 800 1000 1200
Global round Global round Global round m

— (a) MNIST (b) FMNIST (c) CIFAR10 L



Sageflow algorithm

Stragglers + adversaries: 20%(model/data), 10%(backdoor) participants
Baselines: asynchronized Zeno+, Multi-Krum

® Zeno+: does not perform well(ignore staleness & entropy)

® Waiting + RFA: suffer from straggler

Ilgnoring/Sag + RFA: poor(high attack ratio) @ eflow/RFA + FedAsync: poor(one-by-one arrivals)

100 - T . r 70
P A 21 % 80 ] -
! Wi L \ - : ; 6O | 1
BOF I,"I' |I | ||I||.'l \ 1 -""'F'lll_; A
- | | | | Il,_lli \ ey = A I W
E o ( —— Sageflow (Ours) EEU i N 1 SSD ~—— Sageflow (Ours)
3 I e —FadA Tlow
o] - ;:;Pfg:; o § 20810 (L) A § 40 Sag CREA
E ——Ignore stragglers + RFA E 40 F | ;;i;ﬁ;syﬂr:; o E 30t anprﬂ stragglers + RFA
E 40 —— Wait for stragglers + RFA E \ioes ergolers - RFA E :w;u_tfur stragglers + RFA
— Wait for parial stragglers + RFA ——— Wait for stragglers + RFA 50 Wait for partial stragglers + RFA
20 :EB"“* 20 ——Wait for partial stragglers + RFA | 4 et
V U“l Zeno+ 10
0 50 100 150 0 50 100 150 0 200 400 600 800 1000 1200

Running time Running time Running time
| — (a) MNIST (b) FMNIST (c) CIFAR10 UJm



Sageflow algorithm

Sageflow: robust FL scheme handle both stragglers and adversaries
 staleness-aware grouping: stragglers
 entropy-based filtering: model poisoning

 loss-weighted averaging: data poisoning + backdoor
® Theoretical convergence analysis
Extensive experimental results

Future issues: Sageflow + secure aggregation
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* Overview

« Dataset generation
« System introduction

« FedAvg example
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Our simulation platform

Overview
» Currently, 611 stars, 151 forks
« 29 algorithms, 8 famous datasets + 3 loT datasets +3 Cross-domain datasets
» Record the GPU memory usage for the model

« Differential privacy

& TsingZ0 / PFL-Non-1ID  public

& Watch 3 ? Fork 101 - Starred 399 -

/\T\J%’Z%ﬁdﬁ
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Our simulation platform

Baselines

Traditional FL

e FedAvg — Communication-Efficient Learning of Deep Networks from Decentralized Data AISTATS 2017
Update-correction-based FL

e SCAFFOLD - SCAFFOLD: Stochastic Controlled Averaging for Federated Learning ICML 2020
Regularization-based FL

e FedProx — Federated Optimization in Heterogeneous Networks MLsys 2020

e FedDyn — Federated Learning Based on Dynamic Regularization ICLR 2021
Model-splitting-based FL

e MOON — Model-Contrastive Federated Learning CVPR 2027
Knowledge-distillation-based FL

e FedGen — Data-Free Knowledge Distillation for Heterogeneous Federated Learning ICML 2027

/\T\i"%‘i@ﬁdﬁ L
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Our simulation platform

Baselines

Personalized FL

FedMTL (not MOCHA) — Federated multi-task learning NeurlPS 2017
FedBN — FedBEN: Federated Learning on non-lID Features via Local Batch Normalization ICLR 2021
Meta-learning-based pFL

Per-FedAvg — Personalized Federated Learning with Theoretical Guarantees: A Model-Agnostic Meta-Learning
Approach NeurlPS 2020

Regularization-based pFL

pFedMe — Personalized Federated Learning with Moreau Envelopes NeurlPS 2020

Ditto — Ditto: Fair and robust federated learning through personalization JICML 2027
Personalized-aggregation-based pFL

APFL — Adaptive Personalized Federated Learning 2020

FedFomo — Personalized Federated Learning with First Order Mode| Optimization ICLR 2027
FedAMP — Personalized Cross-Silo Federated Learning on non-IID Data AAAI 2021

FedPHP — FedPHP: Federated Personalization with Inherited Private Models ECML PKDD 2021
APPLE — Adapt to Adaptation: Learning Personalization for Cross-Silo Federated Learning JCAI 2022

FedALA — FedALA: Adaptive Local Aggregation for Personalized Federated Learning AAA! 2023

\i"%“i@ﬁdﬁ
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Baselines

Model-splitting-based pFL

FedPer — Federated Learning with Personalization Layers 2079

LG-FedAvg — Think Locally, Act Globally: Federated Learning with Local and Global Representations 2020
FedRep — Exploiting Shared Representations for Personalized Federated Learning /ICML 2021

FedRoD — On Bridging Generic and Personalized Federated Learning for Image Classification ICLR 2022
FedBABU — Fedbabu: Towards enhanced representation for federated image classification ICLR 2022
FedGC — Federated Learning for Face Recognition with Gradient Correction AAA! 2022
Knowledge-distillation-based pFL

FedDistill — Federated Knowledge Distillation 2020

FML — Federated Mutual Learning 2020

FedKD — Communication-efficient federated learning via knowledge distillation Nature Communications 2022
FedProto — FedProto: Federated Prototype Learning across Heterogeneous Clients AAAI 2022

FedPCL (w/o pre-trained models) — Federated learning from pre-trained models: A contrastive learning
approach NeurlPS 2022 ("Our proposed framework is limited to the cases where pre-trained models are
available.” from https://arxiv.org/pdf/2209.10083.pdf (p. 18))

FedPAC — Personalized Federated Learning with Feature Alignment and Classifier Collaboration ICLR 2023

\i%ﬁﬁdﬁ
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Our simulation platform

Datasets

Datasets and Separation (updating)

For the label skew setting, | introduce 8 famous datasets: MNIST, Fashion-MNIST, Cifar10, Cifar100, AG_News,
Sogou_News (If ConnectionError raises, please use the given downloaded file in ./dataset ), and Tiny-lmageNet
(fetch raw data from this site), they can be easy split into IID and non-IID version. Since some codes for generating
datasets such as splitting are the same for all datasets, | move these codes into ./dataset/utils/dataset_utils.py .
In non-1ID setting, two situations exist. The first one is the pathological non-1ID setting, the second one is practical
non-1ID setting. In the pathological non-IID setting, for example, the data on each client only contains the specific
number of labels (maybe only two labels), though the data on all clients contains 10 labels such as MNIST dataset. In
the practical non-IID setting, Dirichlet distribution is utilized (please refer to this paper for details). We can input
balance for the iid setting, where the data are uniformly distributed.

For the feature shift setting, | use one dataset that widely used in Domain Adaptation: AmazonReview (fetch raw
data from this site), Digit5 (fetch raw data from this site), and DomainNet.

For the real-world (or IoT) setting, | also introduce one naturally separated dataset: Omniglot (20 clients, 50 labels),
HAR (Human Activity Recognition) (30 clients, 6 labels), PAMAP2 (9 clients, 12 labels). For the details of datasets and
FL methods in loT, please refer to my FL-1oT repo.

If you need another data set, just write another code to download it and then using the utils.
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Our simulation platform

e for MNIST and Fashion-MNIST

Models

i. Mclr_Logistic(1*28%28)
ii. LeNet()
iii. DNN(1*28*28, 100) # non-convex

for Cifar10, Cifar100 and Tiny-ImageNet

i. Mclr_Logistic(3*32%32)
ii. FedAvgCNN()
iii. DNN(3*32*32, 100) # non-convex
iv. ResMNet18, AlexNet, MobileNet, GoogleNet, etc.

for AG_News and Sogou_News

i. LSTM()
ii. fastText() in Bag of Tricks for Efficient Text Classification
iii. TextCNN() in Convolutional Neural Networks for Sentence Classification

iv. TransformerModel() in Attention is all you need

for AmazonReview

i. AmazonMLP() in Curriculum manager for source selection in multi-source domain adaptation

for Omniglot

\J%JTUJﬁ .
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Our simulation platform

Installation

Environments

Install CUDA first.

With the installed conda, we can run this platform in a conda virtual environment called fl_torch.

conda env create -f env_cuda latest.yaml

/\T\J%’Z%ﬁdﬁ L
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Our simulation platform

Dataset

o MNIST

cd ./dataset

python generate mnist.py iid - - # for iid and unbalanced scenario
# python generate mnist.py iid balance - # for iid and balanced scenario

# python generate mnist.py noniid - pat # for pathological noniid and unbalanced scenario

# python generate mnist.py noniid - dir # for practical noniid and unbalanced scenario

The output of generate mnist.py iid - -

Original number of samples of each label: [6283, 7877, 6998, 7141, 6824, 6313, 6876, 7293, 6825, 6958]

data: 1864
of labels:

Labels: [B. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
[(e, 101), (1, 128), (2, 136), (3, 123), (4, 79), (5, 85), (6, 167), (7. 127

data: 1823
of labels:

igbels: [@.4..2. 3. 3. 5.6..7.2: 9.3
[(e, 76), (1, 132), (2, 187), (3, 79), (4, 94), (5, 118), (6, 90), (7, 118),

Client 8 Size of
Client 8 Samples
Client 1 Size of
Client 1 Samples
Client 2 Size of
Client 2 Samples

data: 923
of labels:

Labels: [B. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
[(e, 136), (1, 89), (2, 84), (3, 88), (4, 78), (5, 124), (6, 128), (7, 66),

]

7l
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Our simulation platform

Execution

How to start simulating

» Build dataset: Datasets

® Train and evaluate the model:

cd ./system
python main.py -data mnist -m cnn -algo FedAvg -gr 25@8 -did @ -go cnn # for FedAvg and MNIST

Or you can uncomment the lines you need in . /system/examples.sh and run:

cd ./system
sh examples.sh

Note: The hyper-parameters have not been tuned for the algorithms. The values in ./system/examples.sh are just
examples. You need to tune the hyper-parameters by yourself.
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Our simulation platform

Top-down Algorithm 1 FederatedAveraging. The K clients are
indexed by k; B is the local minibatch size, F is the number

« Server: Aggregate, Send, Receive, Evaluate of local epochs, and 1 is the learning rate.

« Add Server executes:
. . . initialize wy

» Client: Train, Receive, Send for eachround t = 1,2,... do
- Dataset m « max(C - K,1)

S; < (random set of m clients)
0 ez for each client k£ € S; in parallel do
» Optimizer wy,  + ClientUpdate(k, w;)

Wi41 < Zk:l n Wil

ClientUpdate(k, w): // Run on client k
B <+ (split Py into batches of size B)
for each local epoch 7 from 1 to £ do

for batch b € B do
w — w —nVL(w;b)
return w to server

m%ig\fﬂjﬁ L
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Our simulation platform

System introduction
* main.py
« torchvision.models
* models.py
« serverbase.py

 clientbase.py
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90




Our simulation platform

System introduction

 fedoptimizer.py
« Utils
« data_utils.py
 mem_utils.py

* privacy.py

* result_utils.py
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Our simulation platform

FedAvg example
e serveravg.py

 clientavg.py
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