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FedAvg algorithm

Background

• Recently, attributed to the collection of massive data from users or organizations, AI 
has been thriving for years. 

• However, some private data is also collected during data collection, such as the 
shopping behaviors, facial images, house locations, etc. 

• Data breach is becoming more and more severe, and many governments have 
issued data privacy protecting laws. 
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FedAvg algorithm

Background

• AI model training based on distributed computing and edge computing is required.
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FedAvg algorithm

Background

• Different from traditional settings, data cannot be collected and naturally exists locally. 
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FedAvg algorithm

Contributions

• Consider the problem of training dispersed data from mobile devices as an important 
research direction. 

• Propose a simple and practical algorithm for Federated Averaging.

• An extensive empirical evaluation of the proposed algorithms shows that they are 
robust to non-independently identically distributed (Non-IID) and unbalanced data.
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FedAvg algorithm

Federated learning review

• Learning tasks are handled by a loose federation of participating devices (clients) 
coordinated by a central server.
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FedAvg algorithm

Federated learning review

• Each client has a local training data set that does not need to be uploaded to the 
server and only sends local model parameters for each update.
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FedAvg algorithm

Federated learning (FL) review: ideal FL

• Training on real-world data from mobile devices has distinct advantages over the 
proxy data that is ubiquitous in data centers.

• This data is privacy-sensitive or large (compared to the size of the model) to avoid 
recording it to the data center for model training.

• For supervised tasks, labels on data can be naturally inferred from user interactions.
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FedAvg algorithm

Federated learning (FL) review: privacy

• In the traditional distributed training setting, even if an "anonymous" data set is held, 
users' privacy will be threatened through the connection with other data.

• In contrast, the information transmitted in FL is the minimum update (all/part of the 
model parameters) needed to improve a particular model, and less information means 
a lower risk of privacy disclosure.

• Combining FL with secure multi-party computing and differential privacy.
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FedAvg algorithm

Federated settings

• Non-IID data: Training data on a given client is usually based on mobile device usage 
by a particular user, so any local data set for a particular user does not represent a 
group distribution.

• Imbalance: Some users will use the service or application more than others, resulting 
in different amounts of local training data.

• Massive clients: We expect the number of clients participating in the FL to be much 
larger than the average number of instances per client.

• Limited communication: Mobile devices are often offline or in a slow or expensive 
connection.
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FedAvg algorithm

Objective

K   number of clients
P�  the distribution of local data
n� the number of local data samples

 �� � = � ��, ��; � 
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FedAvg algorithm

Limited communication

• In data center optimization, communication costs are relatively small while computing 
costs dominate, and recent emphasis has been on using GPUs to reduce these costs. 
In contrast, in joint optimization, communication costs dominate -- we're typically 
limited by upload bandwidth of 1MB/s or less.

• Clients typically volunteer for optimization only when charging, plugging in, and using 
a non-billable Wi-Fi connection, and we expect each client to participate in a small 
number of update sessions per day.

• Modern smartphones have plenty of local computing power and small datasets 
on a single device.
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FedAvg algorithm

Reduce communication

• Increasing parallelism, that is, using more clients to work independently between 
rounds of communication.

• Add computations per client, that is, perform more complex computations (such as 
cumulative training) between rounds of communication.
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FedAvg algorithm

Federated Averaging

K：Client amount

B：Batch size

E：Local training rounds

η：Local learning rate
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FedAvg algorithm

Federated Averaging

• It is beneficial to initialize local models with the common start point

• Mixed weight = θw + (1 - θ)w′
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FedAvg algorithm

Experiments

• Image classification: MNIST handwritten digital recognition

• Language modeling: Dataset based on the Complete Works of William Shakespeare
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FedAvg algorithm

Experiments (MNIST)

• IID: shuffling the data and dividing it into 100 clients, each receiving 600 examples.

• Non-IID: (1) sort the data by number label; (2) divide it into 200 shards of size 300; (3) 
assign 2 shards to each of the 100 clients, most clients will have only two number 
examples.
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FedAvg algorithm

Experiments (MNIST)

• 1) A simple multilayer-perceptron with 2-hidden  layers with 200 units each using 
ReLU activations (199,210  total parameters), which we refer to as the MNIST 2NN.

Hidden neuronsInput neurons Output neuronsHidden layer Hidden layer
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FedAvg algorithm

Experiments (MNIST)

• 1) A simple multilayer-perceptron with 2-hidden  layers with 200 units each using 
ReLU activations (199,210  total parameters), which we refer to as the MNIST 2NN.

class FedAvgMLP(nn.Module):
    def __init__(self, in_features=784, num_classes=10, hidden_dim=200):
        super().__init__()
        self.fc1 = nn.Linear(in_features, hidden_dim)
        self.fc2 = nn.Linear(hidden_dim, num_classes)
        self.act = nn.ReLU(inplace=True)

    def forward(self, x):
        if x.ndim == 4:
            x = x.view(x.size(0), -1)
        x = self.act(self.fc1(x))
        x = self.fc2(x)
        return x
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FedAvg algorithm

Experiments (MNIST)

• 2) A CNN with two 5x5 convolution layers (the first with  32 channels, the second with 
64, each followed with 2x2  max pooling), a fully connected layer with 512 units and 
ReLU activation, and a final softmax output layer (1,663,370  total parameters).

class FedAvgCNN(nn.Module):
    def __init__(self, in_features=1, num_classes=10, dim=1024):
        super().__init__()
        self.conv1 = nn.Sequential(
            nn.Conv2d(in_features,
                        32,
                        kernel_size=5,
                        padding=0,
                        stride=1,
                        bias=True),
            nn.ReLU(inplace=True), 
            nn.MaxPool2d(kernel_size=(2, 2))
        )



23

FedAvg algorithm

Experiments (Key hyperparameters)

• C：Proportion of clients participating in calculation: 1 indicates that all clients 
participate in training

• E：Number of training cycles per client between two communications

• B：Mini-batch size of each client. ∞ indicates full-batch

• �� = � ��
�

：The total number of updates in each iteration on client �
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FedAvg algorithm

Experiments (communication rounds)

C = 0.1 is the best

C：Proportion of clients participating in calculation
E：Number of training cycles per client between two communications
B：Mini-batch size of each client. ∞ indicates full-batch
�� = � ��

�
：The total number of updates in each iteration on client �
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FedAvg algorithm

Experiments (communication rounds)

C：Proportion of clients participating in calculation
E：Number of training cycles per client between two communications
B：Mini-batch size of each client. ∞ indicates full-batch
�� = � ��

�
：The total number of updates in each iteration on client �

FedSGD: C = 1 and Full-
Batch Optimization

FedAvg: C = 0.1
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FedAvg algorithm

Experiments (training loss curves)

C：Proportion of clients participating in calculation, C=0.1
E：Number of training cycles per client between two communications
B：Mini-batch size of each client. B=10.
�� = � ��

�
：The total number of updates in each iteration on client �
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FedAvg algorithm

Experiments (training loss curves)

C：Proportion of clients participating in calculation, C=0.1
E：Number of training cycles per client between two communications
B：Mini-batch size of each client. B=10.
�� = � ��

�
：The total number of updates in each iteration on client �

LSTM



MOON algorithm
• Observation 

• Contrastive learning

• MOON
02
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MOON algorithm

Observation 

• The global  model trained on a whole dataset can learn a better representation than the local 
model trained on a skewed  subset.
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MOON algorithm

Observation 

• The global  model trained on a whole dataset can learn a better representation than the local 
model trained on a skewed  subset.

• Propose model-contrastive learning (MOON), which corrects the local updates by maximizing  
the  agreement  of  representation  learned  by  the  current local model and the representation 
learned by the  global model.
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MOON algorithm

Contrastive learning

• The key  idea of contrastive learning is to reduce the distance between the representations of 
different augmented views of  the same image (i.e., positive pairs), and increase the distance 
between the representations of augmented views of  different images (i.e., negative pairs)
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MOON algorithm

MOON

• Global representation

• Local representation 

• Current representation

•  
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MOON algorithm

MOON



FedDyn algorithm
• Intuition

• FedDyn

• Analysis 
03
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FedDyn algorithm

Intuition

• Training  models on local data that minimize local empirical loss appears to be meaningful, but  
yet, doing so is fundamentally inconsistent with minimizing the global empirical loss.

• Dynamically modify the device objective with a penalty term so that, in the limit, when model  
parameters converge, they do so to stationary points of the global empirical loss.
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FedDyn algorithm

FedDyn
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FedDyn algorithm

Analysis

• The first order condition

• If local device models converge, they converge to the server model,  and the convergence 
point is a stationary point of the global loss.



KT-pFL algorithm
• Intuition

• Knowledge Distillation (KD)

• KT-pFL
04
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KT-pFL algorithm

Intuition

• Main idea is to allow each client to maintain  a personalized soft prediction at the server that 
can be updated by a linear combination of all  clients  local soft predictions using a knowledge 
coefficient matrix.

• Regardless of model structures
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KT-pFL algorithm

Knowledge Distillation (KD)

• Transfer knowledge from well-learned teacher model to student model
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KT-pFL algorithm

Knowledge Distillation (KD)

• Classification 
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KT-pFL algorithm

Knowledge Distillation (KD)

• Response-based KD
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KT-pFL algorithm

KT-pFL

• Objective 
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KT-pFL algorithm

KT-pFL

• Personalized loss function
•  Kullback–Leibler (KL) Divergence

• ��� is the knowledge coefficient which is used to estimate the contribution from client m to n.

• � �� ,  �   can be deemed to be a soft prediction of the client n
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KT-pFL algorithm

KT-pFL

• Knowledge coefficient matrix
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KT-pFL algorithm

KT-pFL

• Objective 
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KT-pFL algorithm

KT-pFL

• Training 
• Update w

• Local Training

• Distillation

• Update c
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KT-pFL algorithm

KT-pFL
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KT-pFL algorithm

KT-pFL

• Illustration  



FedMA algorithm
• Permutation invariance 

• Matched averaging formulation

• FedMA
05
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FedMA algorithm

Permutation invariance

y

 w1                                w2
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FedMA algorithm

Permutation invariance （fully-connected (FC) layer)
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FedMA algorithm

Permutation invariance （fully-connected (FC) layer)
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FedMA algorithm

Permutation invariance （fully-connected (FC) layer)

Aggregation

Client A:

Solution:

Client B:
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FedMA algorithm

Permutation invariance （FCs)

Simple FCs:

Deep FCs:
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FedMA algorithm

Permutation invariance （FCs)
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FedMA algorithm

Permutation invariance （CNN)

CNN :

FC :
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FedMA algorithm

Permutation invariance （recall)

Aggregation

Client A:

Solution:

Client B:
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FedMA algorithm

Matched averaging formulation
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FedMA algorithm

Matched averaging formulation
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FedMA algorithm

FedMA (https://github.com/IBM/FedMA)

Aggregation



62

FedMA algorithm

FedMA (https://github.com/IBM/FedMA)
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FedMA algorithm

FedMA (https://github.com/IBM/FedMA)
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FedMA algorithm

FedMA (https://github.com/IBM/FedMA)

Aggregation
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FedMA algorithm

FedMA (https://github.com/IBM/FedMA)



Sageflow algorithm
• Staleness-aware grouping

• Entropy-based filtering

• Loss-weighted averaging
06
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Sageflow algorithm

Stragglers: slow devices

• Keep waiting: slow down the overall process

• Drop out: important data missing

• Asynchronous(staleness): + adversaries?

Attackers: malicious attacks launched by adversaries

• untargeted attacks: model poisoning, data 
poisoning

• targeted/backdoor attacks: misclassify the 
targeted subtasks

• Robust Federated Averaging & Multi-Krum

• Large portion of adversaries

• Straggler: increase attack ratio
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Sageflow algorithm

Staleness-aware grouping

Entropy-based filtering + Loss-weighted averaging
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Sageflow algorithm

Staleness-aware grouping

• perform periodic global aggregation(fixed time 
deadline)

• allow stragglers to be aggregated in later rounds

• group with same staleness -> group 
representative model

• aggregate according to staleness

Staleness group Number of data samples

Staleness function



Sageflow algorithm

Entropy-based filtering

• Public data on server

• Filter out high entropy models (loss)

• For model poisoning

Shannon
entropy



Sageflow algorithm

• Loss-weighted averaging

• Aggregation weight according to local models’ 
measured qualities

• Measure by loss on public data

• data-poisoned model -> small weight + less impact

• For data poisoning & scaled backdoor



Sageflow algorithm

Time complexity
Public
data

Model
parameters

Clients
number



Sageflow algorithm

Theoretical Analysis

Convergence analysis

• Assumption 1: µ-strongly convex + L-smooth

• Assumption 2: unbiased estimation

Theoretical bound

Convergence speed Error



Sageflow algorithm

Datasets: MNIST, FMNIST, CIFAR10

• 2% as public data

Models: CNN(2conv+2fc), CNN(2conv+1fc), CNN(VGG-11)

• ignore batchnorm

FL setting: 100 clients, two classes for each client, 5 local epochs, batch size of 10



Sageflow algorithm

Only stragglers: 10% participants

Baselines: FedAvg(waiting, ignoring, waiting 50%), FedAsync

Settings: uniform delay of [0,1,2] global rounds

Ignoring lose significant data converges to a suboptimal point

Waiting(all, 50%) requires the largest running time until convergence



Sageflow algorithm

Only adversaries: 20% participants

Baselines: RFA,  FedAvg,  synchronized Zeno+, Multi-Krum

Attacks: model(-0.1w), data(label-flipping), backdoor(model replacement, pixel-pattern attack)

FedAvg does not work well on all datasets

RFA: complex model led to worse performance

Zeno+: bad on poisoning but good for backdoor

Sageflow: slow down posioning



Sageflow algorithm

Stragglers + adversaries: 20%(model/data), 10%(backdoor) participants

Baselines: asynchronized Zeno+, Multi-Krum

Zeno+: does not perform well(ignore staleness & entropy)

Waiting + RFA: suffer from straggler

Ignoring/Sag + RFA: poor(high attack ratio) eflow/RFA + FedAsync: poor(one-by-one arrivals)



Sageflow algorithm

Sageflow: robust FL scheme handle both stragglers and adversaries

• staleness-aware grouping: stragglers

• entropy-based filtering: model poisoning

• loss-weighted averaging: data poisoning + backdoor

Theoretical convergence analysis

Extensive experimental results

Future issues: Sageflow + secure aggregation



Our simulation platform
• Overview

• Dataset generation

• System introduction

• FedAvg example
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Our simulation platform

Overview
• Currently, 611 stars, 151 forks

• 29 algorithms, 8 famous datasets + 3 IoT datasets +3 Cross-domain datasets

• Record the GPU memory usage for the model

• Differential privacy
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Our simulation platform

Baselines



82

Our simulation platform

Baselines
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Our simulation platform

Baselines
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Our simulation platform

Datasets



85

Our simulation platform

Models
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Our simulation platform

Installation
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Our simulation platform

Dataset
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Our simulation platform

Execution
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Our simulation platform

Top-down
• Server: Aggregate, Send, Receive, Evaluate

• Add

• Client: Train, Receive, Send

• Dataset

• Model

• Optimizer
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Our simulation platform

System introduction
• main.py

• torchvision.models

• models.py

• serverbase.py

• clientbase.py
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Our simulation platform

System introduction
• fedoptimizer.py

• Utils
• data_utils.py

• mem_utils.py

• privacy.py

• result_utils.py
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Our simulation platform

FedAvg example
• serveravg.py

• clientavg.py
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