
Federated Learning (FL) Lab

目 录

1 FedAvg algorithm

6 SageFlow algorithm

5 FedMA algorithm

MOON algorithm2

FedDyn algorithm3

KT-pFL algorithm4

7 Our simulation platform

FedAvg algorithm
• Background and contributions

• Federated learning review

• Federated settings

• Federated Averaging

• Experiments

01

4

FedAvg algorithm

Background

• Recently, attributed to the collection of massive data from users or organizations, AI
has been thriving for years.

• However, some private data is also collected during data collection, such as the
shopping behaviors, facial images, house locations, etc.

• Data breach is becoming more and more severe, and many governments have
issued data privacy protecting laws.

5

FedAvg algorithm

Background

• AI model training based on distributed computing and edge computing is required.

6

FedAvg algorithm

Background

• Different from traditional settings, data cannot be collected and naturally exists locally.

7

FedAvg algorithm

Contributions

• Consider the problem of training dispersed data from mobile devices as an important
research direction.

• Propose a simple and practical algorithm for Federated Averaging.

• An extensive empirical evaluation of the proposed algorithms shows that they are
robust to non-independently identically distributed (Non-IID) and unbalanced data.

8

FedAvg algorithm

Federated learning review

• Learning tasks are handled by a loose federation of participating devices (clients)
coordinated by a central server.

9

FedAvg algorithm

Federated learning review

• Each client has a local training data set that does not need to be uploaded to the
server and only sends local model parameters for each update.

10

FedAvg algorithm

Federated learning (FL) review: ideal FL

• Training on real-world data from mobile devices has distinct advantages over the
proxy data that is ubiquitous in data centers.

• This data is privacy-sensitive or large (compared to the size of the model) to avoid
recording it to the data center for model training.

• For supervised tasks, labels on data can be naturally inferred from user interactions.

11

FedAvg algorithm

Federated learning (FL) review: privacy

• In the traditional distributed training setting, even if an "anonymous" data set is held,
users' privacy will be threatened through the connection with other data.

• In contrast, the information transmitted in FL is the minimum update (all/part of the
model parameters) needed to improve a particular model, and less information means
a lower risk of privacy disclosure.

• Combining FL with secure multi-party computing and differential privacy.

12

FedAvg algorithm

Federated settings

• Non-IID data: Training data on a given client is usually based on mobile device usage
by a particular user, so any local data set for a particular user does not represent a
group distribution.

• Imbalance: Some users will use the service or application more than others, resulting
in different amounts of local training data.

• Massive clients: We expect the number of clients participating in the FL to be much
larger than the average number of instances per client.

• Limited communication: Mobile devices are often offline or in a slow or expensive
connection.

13

FedAvg algorithm

Objective

K number of clients
P� the distribution of local data
n� the number of local data samples

 �� � = � ��, ��; �

14

FedAvg algorithm

Limited communication

• In data center optimization, communication costs are relatively small while computing
costs dominate, and recent emphasis has been on using GPUs to reduce these costs.
In contrast, in joint optimization, communication costs dominate -- we're typically
limited by upload bandwidth of 1MB/s or less.

• Clients typically volunteer for optimization only when charging, plugging in, and using
a non-billable Wi-Fi connection, and we expect each client to participate in a small
number of update sessions per day.

• Modern smartphones have plenty of local computing power and small datasets
on a single device.

15

FedAvg algorithm

Reduce communication

• Increasing parallelism, that is, using more clients to work independently between
rounds of communication.

• Add computations per client, that is, perform more complex computations (such as
cumulative training) between rounds of communication.

16

FedAvg algorithm

Federated Averaging

K：Client amount

B：Batch size

E：Local training rounds

η：Local learning rate

17

FedAvg algorithm

Federated Averaging

• It is beneficial to initialize local models with the common start point

• Mixed weight = θw + (1 - θ)w′

18

FedAvg algorithm

Experiments

• Image classification: MNIST handwritten digital recognition

• Language modeling: Dataset based on the Complete Works of William Shakespeare

19

FedAvg algorithm

Experiments (MNIST)

• IID: shuffling the data and dividing it into 100 clients, each receiving 600 examples.

• Non-IID: (1) sort the data by number label; (2) divide it into 200 shards of size 300; (3)
assign 2 shards to each of the 100 clients, most clients will have only two number
examples.

20

FedAvg algorithm

Experiments (MNIST)

• 1) A simple multilayer-perceptron with 2-hidden layers with 200 units each using
ReLU activations (199,210 total parameters), which we refer to as the MNIST 2NN.

Hidden neuronsInput neurons Output neuronsHidden layer Hidden layer

21

FedAvg algorithm

Experiments (MNIST)

• 1) A simple multilayer-perceptron with 2-hidden layers with 200 units each using
ReLU activations (199,210 total parameters), which we refer to as the MNIST 2NN.

class FedAvgMLP(nn.Module):
 def __init__(self, in_features=784, num_classes=10, hidden_dim=200):
 super().__init__()
 self.fc1 = nn.Linear(in_features, hidden_dim)
 self.fc2 = nn.Linear(hidden_dim, num_classes)
 self.act = nn.ReLU(inplace=True)

 def forward(self, x):
 if x.ndim == 4:
 x = x.view(x.size(0), -1)
 x = self.act(self.fc1(x))
 x = self.fc2(x)
 return x

22

FedAvg algorithm

Experiments (MNIST)

• 2) A CNN with two 5x5 convolution layers (the first with 32 channels, the second with
64, each followed with 2x2 max pooling), a fully connected layer with 512 units and
ReLU activation, and a final softmax output layer (1,663,370 total parameters).

class FedAvgCNN(nn.Module):
 def __init__(self, in_features=1, num_classes=10, dim=1024):
 super().__init__()
 self.conv1 = nn.Sequential(
 nn.Conv2d(in_features,
 32,
 kernel_size=5,
 padding=0,
 stride=1,
 bias=True),
 nn.ReLU(inplace=True),
 nn.MaxPool2d(kernel_size=(2, 2))
)

23

FedAvg algorithm

Experiments (Key hyperparameters)

• C：Proportion of clients participating in calculation: 1 indicates that all clients
participate in training

• E：Number of training cycles per client between two communications

• B：Mini-batch size of each client. ∞ indicates full-batch

• �� = � ��
�

：The total number of updates in each iteration on client �

24

FedAvg algorithm

Experiments (communication rounds)

C = 0.1 is the best

C：Proportion of clients participating in calculation
E：Number of training cycles per client between two communications
B：Mini-batch size of each client. ∞ indicates full-batch
�� = � ��

�
：The total number of updates in each iteration on client �

25

FedAvg algorithm

Experiments (communication rounds)

C：Proportion of clients participating in calculation
E：Number of training cycles per client between two communications
B：Mini-batch size of each client. ∞ indicates full-batch
�� = � ��

�
：The total number of updates in each iteration on client �

FedSGD: C = 1 and Full-
Batch Optimization

FedAvg: C = 0.1

26

FedAvg algorithm

Experiments (training loss curves)

C：Proportion of clients participating in calculation, C=0.1
E：Number of training cycles per client between two communications
B：Mini-batch size of each client. B=10.
�� = � ��

�
：The total number of updates in each iteration on client �

27

FedAvg algorithm

Experiments (training loss curves)

C：Proportion of clients participating in calculation, C=0.1
E：Number of training cycles per client between two communications
B：Mini-batch size of each client. B=10.
�� = � ��

�
：The total number of updates in each iteration on client �

LSTM

MOON algorithm
• Observation

• Contrastive learning

• MOON
02

29

MOON algorithm

Observation

• The global model trained on a whole dataset can learn a better representation than the local
model trained on a skewed subset.

30

MOON algorithm

Observation

• The global model trained on a whole dataset can learn a better representation than the local
model trained on a skewed subset.

• Propose model-contrastive learning (MOON), which corrects the local updates by maximizing
the agreement of representation learned by the current local model and the representation
learned by the global model.

31

MOON algorithm

Contrastive learning

• The key idea of contrastive learning is to reduce the distance between the representations of
different augmented views of the same image (i.e., positive pairs), and increase the distance
between the representations of augmented views of different images (i.e., negative pairs)

32

MOON algorithm

MOON

• Global representation

• Local representation

• Current representation

•

33

MOON algorithm

MOON

FedDyn algorithm
• Intuition

• FedDyn

• Analysis
03

35

FedDyn algorithm

Intuition

• Training models on local data that minimize local empirical loss appears to be meaningful, but
yet, doing so is fundamentally inconsistent with minimizing the global empirical loss.

• Dynamically modify the device objective with a penalty term so that, in the limit, when model
parameters converge, they do so to stationary points of the global empirical loss.

36

FedDyn algorithm

FedDyn

37

FedDyn algorithm

Analysis

• The first order condition

• If local device models converge, they converge to the server model, and the convergence
point is a stationary point of the global loss.

KT-pFL algorithm
• Intuition

• Knowledge Distillation (KD)

• KT-pFL
04

39

KT-pFL algorithm

Intuition

• Main idea is to allow each client to maintain a personalized soft prediction at the server that
can be updated by a linear combination of all clients local soft predictions using a knowledge
coefficient matrix.

• Regardless of model structures

40

KT-pFL algorithm

Knowledge Distillation (KD)

• Transfer knowledge from well-learned teacher model to student model

41

KT-pFL algorithm

Knowledge Distillation (KD)

• Classification

42

KT-pFL algorithm

Knowledge Distillation (KD)

• Response-based KD

43

KT-pFL algorithm

KT-pFL

• Objective

44

KT-pFL algorithm

KT-pFL

• Personalized loss function
• Kullback–Leibler (KL) Divergence

• ��� is the knowledge coefficient which is used to estimate the contribution from client m to n.

• � �� , � can be deemed to be a soft prediction of the client n

45

KT-pFL algorithm

KT-pFL

• Knowledge coefficient matrix

46

KT-pFL algorithm

KT-pFL

• Objective

47

KT-pFL algorithm

KT-pFL

• Training
• Update w

• Local Training

• Distillation

• Update c

48

KT-pFL algorithm

KT-pFL

49

KT-pFL algorithm

KT-pFL

• Illustration

FedMA algorithm
• Permutation invariance

• Matched averaging formulation

• FedMA
05

51

FedMA algorithm

Permutation invariance

y

 w1 w2

52

FedMA algorithm

Permutation invariance （fully-connected (FC) layer)

53

FedMA algorithm

Permutation invariance （fully-connected (FC) layer)

54

FedMA algorithm

Permutation invariance （fully-connected (FC) layer)

Aggregation

Client A:

Solution:

Client B:

55

FedMA algorithm

Permutation invariance （FCs)

Simple FCs:

Deep FCs:

56

FedMA algorithm

Permutation invariance （FCs)

57

FedMA algorithm

Permutation invariance （CNN)

CNN :

FC :

58

FedMA algorithm

Permutation invariance （recall)

Aggregation

Client A:

Solution:

Client B:

59

FedMA algorithm

Matched averaging formulation

60

FedMA algorithm

Matched averaging formulation

61

FedMA algorithm

FedMA (https://github.com/IBM/FedMA)

Aggregation

62

FedMA algorithm

FedMA (https://github.com/IBM/FedMA)

63

FedMA algorithm

FedMA (https://github.com/IBM/FedMA)

64

FedMA algorithm

FedMA (https://github.com/IBM/FedMA)

Aggregation

65

FedMA algorithm

FedMA (https://github.com/IBM/FedMA)

Sageflow algorithm
• Staleness-aware grouping

• Entropy-based filtering

• Loss-weighted averaging
06

67

Sageflow algorithm

Stragglers: slow devices

• Keep waiting: slow down the overall process

• Drop out: important data missing

• Asynchronous(staleness): + adversaries?

Attackers: malicious attacks launched by adversaries

• untargeted attacks: model poisoning, data
poisoning

• targeted/backdoor attacks: misclassify the
targeted subtasks

• Robust Federated Averaging & Multi-Krum

• Large portion of adversaries

• Straggler: increase attack ratio

68

Sageflow algorithm

Staleness-aware grouping

Entropy-based filtering + Loss-weighted averaging

69

Sageflow algorithm

Staleness-aware grouping

• perform periodic global aggregation(fixed time
deadline)

• allow stragglers to be aggregated in later rounds

• group with same staleness -> group
representative model

• aggregate according to staleness

Staleness group Number of data samples

Staleness function

Sageflow algorithm

Entropy-based filtering

• Public data on server

• Filter out high entropy models (loss)

• For model poisoning

Shannon
entropy

Sageflow algorithm

• Loss-weighted averaging

• Aggregation weight according to local models’
measured qualities

• Measure by loss on public data

• data-poisoned model -> small weight + less impact

• For data poisoning & scaled backdoor

Sageflow algorithm

Time complexity
Public
data

Model
parameters

Clients
number

Sageflow algorithm

Theoretical Analysis

Convergence analysis

• Assumption 1: µ-strongly convex + L-smooth

• Assumption 2: unbiased estimation

Theoretical bound

Convergence speed Error

Sageflow algorithm

Datasets: MNIST, FMNIST, CIFAR10

• 2% as public data

Models: CNN(2conv+2fc), CNN(2conv+1fc), CNN(VGG-11)

• ignore batchnorm

FL setting: 100 clients, two classes for each client, 5 local epochs, batch size of 10

Sageflow algorithm

Only stragglers: 10% participants

Baselines: FedAvg(waiting, ignoring, waiting 50%), FedAsync

Settings: uniform delay of [0,1,2] global rounds

Ignoring lose significant data converges to a suboptimal point

Waiting(all, 50%) requires the largest running time until convergence

Sageflow algorithm

Only adversaries: 20% participants

Baselines: RFA, FedAvg, synchronized Zeno+, Multi-Krum

Attacks: model(-0.1w), data(label-flipping), backdoor(model replacement, pixel-pattern attack)

FedAvg does not work well on all datasets

RFA: complex model led to worse performance

Zeno+: bad on poisoning but good for backdoor

Sageflow: slow down posioning

Sageflow algorithm

Stragglers + adversaries: 20%(model/data), 10%(backdoor) participants

Baselines: asynchronized Zeno+, Multi-Krum

Zeno+: does not perform well(ignore staleness & entropy)

Waiting + RFA: suffer from straggler

Ignoring/Sag + RFA: poor(high attack ratio) eflow/RFA + FedAsync: poor(one-by-one arrivals)

Sageflow algorithm

Sageflow: robust FL scheme handle both stragglers and adversaries

• staleness-aware grouping: stragglers

• entropy-based filtering: model poisoning

• loss-weighted averaging: data poisoning + backdoor

Theoretical convergence analysis

Extensive experimental results

Future issues: Sageflow + secure aggregation

Our simulation platform
• Overview

• Dataset generation

• System introduction

• FedAvg example

07

80

Our simulation platform

Overview
• Currently, 611 stars, 151 forks

• 29 algorithms, 8 famous datasets + 3 IoT datasets +3 Cross-domain datasets

• Record the GPU memory usage for the model

• Differential privacy

81

Our simulation platform

Baselines

82

Our simulation platform

Baselines

83

Our simulation platform

Baselines

84

Our simulation platform

Datasets

85

Our simulation platform

Models

86

Our simulation platform

Installation

87

Our simulation platform

Dataset

88

Our simulation platform

Execution

89

Our simulation platform

Top-down
• Server: Aggregate, Send, Receive, Evaluate

• Add

• Client: Train, Receive, Send

• Dataset

• Model

• Optimizer

90

Our simulation platform

System introduction
• main.py

• torchvision.models

• models.py

• serverbase.py

• clientbase.py

91

Our simulation platform

System introduction
• fedoptimizer.py

• Utils
• data_utils.py

• mem_utils.py

• privacy.py

• result_utils.py

92

Our simulation platform

FedAvg example
• serveravg.py

• clientavg.py

谢谢观看

