
量子机器学习：概念与实践

马汝辉副教授、博导

计算机科学与工程系

上海交通大学

2

Credits

Zaman K, Marchisio A, Hanif M A, et al. A survey on quantum machine learning: Current

trends, challenges, opportunities, and the road ahead[J]. arXiv preprint arXiv:2310.10315,

2023.

Simeone O. An introduction to quantum machine learning for engineers[J]. Foundations and

Trends® in Signal Processing, 2022, 16(1-2): 1-223.

Qisikit Machine Learning. https://qiskit-community.github.io/qiskit-machine-learning/

TensorFlow Quantum. https://www.tensorflow.org/quantum

https://qiskit-community.github.io/qiskit-machine-learning/
https://www.tensorflow.org/quantum

目 录

Quantum Machine

Learning
1

2

3

Qiskit Machine Learning

TensorFlow Quantum

4

Overview

ML is a class of advanced algorithms that perform a certain task. Given a large number of

inputs and desired outputs, an ML model can be trained to make predictions on unseen data.

If it is executed on quantum computers, it becomes a quantum ML algorithm.

5

Overview

Selection of the architecture of a parametric quantum circuit (PQC), also known as ansatz.

Select the architecture of a PQC by specifying a sequence of parametrized quantum gates

operation of the PQC is defined by a unitary matrix U(θ), which is dependent on a vector of free

parameters θ

Parametric optimization

The optimizer is fed measurements of the quantum state produced by the PQC, typically in the

form of estimated expectations of observables; and it produces updates to the parameter

vector θ.

6

Parametrized Quantum Circuits

Variational or Parametrized Quantum Circuits (PQCs) are specific types of quantum

algorithms that depend on free parameters.

PQCs allow us to utilize the existing quantum computers to their full extent.

In the context of QML, PQCs are used either to encode the data, where the parameters are

determined by the data being encoded, or as a quantum model, where the parameters are

determined by an optimization process.

7

Categorization of QML Approaches

Before diving into the details of QML algorithms, it is important to characterize different

approaches based on the type of data and type of processor used to solve the problem.

8

Categorization of QML Approaches

CC refers to processing Classical data using Classical computers, but using algorithms

inspired by quantum computing.

CQ refers to processing Classical data using Quantum machine learning algorithms.

Main focus

QC refers to processing Quantum data using Classical machine learning algorithms.

Active area

QQ refers to processing Quantum data using Quantum machine learning algorithms. It is

also known as Fully Quantum Machine Learning (FQML).

Future area

9

Categorization of QML Approaches

CC refers to processing Classical data using Classical computers, but using algorithms

inspired by quantum computing.

10

Categorization of QML Approaches

CQ refers to processing Classical data using Quantum machine learning algorithms.

Main focus

11

Categorization of QML Approaches

QC refers to processing Quantum data using Classical machine learning algorithms.

In the QC case, quantum data are first measured, and then the classical measurement outputs

are processed by a classical machine learning model.

12

Quantum Neural Networks

Quantum Neural Networks (QNNs) are computational Artificial Neural Network (ANN) models

that are based on the principles of quantum mechanics.

The quantum circuit contains a feature map module,

an Ansatz module with trainable weights,

Measurements are conducted to obtain the outputs.

13

Quantum Neural Networks

During the NISQ era, the main focus is on Hybrid Quantum Neural Networks (HQNNs).

14

Quantum Neural Networks

Quantum Convolutional Neural Networks

The structure of a classical CNN consists of applying alternating convolutional layers (with an

activation function) and pooling layers, typically followed by fully-connected layers before the

output is generated.

Qiskit Machine Learning

• Qiskit is pronounced "kiss-kit" , though you

may also hear it called "kwis-kit".

02

16

Overview

Qiskit Machine Learning introduces fundamental computational building blocks, such as

Quantum Kernels and Quantum Neural Networks, used in various applications including

classification and regression.

This library is part of the Qiskit Community ecosystem, a collection of high-level codes that

are based on the Qiskit software development kit.

The Qiskit Machine Learning framework aims to be:

User-friendly: allowing users to quickly and easily prototype quantum machine learning models

without the need of extensive quantum computing knowledge

Flexible: providing tools and functionalities to conduct proof-of-concepts and innovative

research in quantum machine learning for both beginners and experts

Extensible: facilitating the integration of new cutting-edge features leveraging Qiskit’s

architectures, patterns and related services

17

What are the main features of Qiskit Machine Learning?

Kernel-based methods

Quantum Neural Networks (QNNs)

Qiskit Machine Learning defines a generic interface for neural networks, implemented by two

core (derived) primitives: EstimatorQNN and SamplerQNN.

Integration with PyTorch

The TorchConnector integrates QNNs with PyTorch.

18

Quantum Neural Networks

Quantum vs. Classical Neural Networks

Classical neural networks are algorithmic models inspired by the human brain that can be

trained to recognize patterns in data and learn to solve complex problems.

The motivation behind quantum machine learning (QML) is to integrate notions from quantum

computing and classical machine learning to open the way for new and improved learning

schemes.

https://qiskit-community.github.io/qiskit-machine-learning/tutorials/01_neural_networks.html

19

Quantum Neural Networks

Because they lie at an intersection between two fields, QNNs can be viewed from two

perspectives:

From a machine learning perspective, QNNs are, once again, algorithmic models that can be

trained to find hidden patterns in data in a similar manner to their classical counterparts.

From a quantum computing perspective, QNNs are quantum algorithms based on

parametrized quantum circuits that can be trained in a variational manner using classical

optimizers.

20

Implementation in qiskit-machine-learning

The QNNs in qiskit-machine-learning are meant as application-agnostic computational units

that can be used for different use cases, and their setup will depend on the application they

are needed for. The module contains an interface for the QNNs and two specific

implementations:

NeuralNetwork:

• The interface for neural networks. This is an abstract class all QNNs inherit from.

EstimatorQNN:

• A network based on the evaluation of quantum mechanical observables.

SamplerQNN:

• A network based on the samples resulting from measuring a quantum circuit.

21

EstimatorQNN

The EstimatorQNN takes in a parametrized quantum circuit as input, as well as an optional

quantum mechanical observable, and outputs expectation value computations for the

forward pass. The EstimatorQNN also accepts lists of observables to construct more

complex QNNs.

22

EstimatorQNN

We can now create an observable to define the expectation value computation. If not set,

then the EstimatorQNN will automatically create the default observable Z⊗n. Here, n is the

number of qubits of the quantum circuit.

In this example, we will change things up and use the Y⊗n observable:

23

EstimatorQNN

Together with the quantum circuit defined above, and the observable we have created, the

EstimatorQNN constructor takes in the following keyword arguments:

estimator

pass_manager

input_params

weight_params

24

SamplerQNN

The SamplerQNN is instantiated in a similar way to the EstimatorQNN, but because it

directly consumes samples from measuring the quantum circuit, it does not require a

custom observable.

Let’s create a different quantum circuit for the SamplerQNN. In this case, we will have two

input parameters and four trainable weights that parametrize a two-local circuit.

25

SamplerQNN

26

SamplerQNN

Similarly to the EstimatorQNN, we must specify inputs and weights when instantiating the

SamplerQNN. In this case, the keyword arguments will be:

Sampler

pass_manager

input_params

weight_params

27

How to Run a Forward Pass

EstimatorQNN Example

28

How to Run a Forward Pass

EstimatorQNN Example

Non-batched Forward Pass

Batched Forward Pass

29

How to Run a Forward Pass

SamplerQNN Example

30

How to Run a Forward Pass

SamplerQNN Example

Non-batched Forward Pass

Batched Forward Pass

31

How to Run a Backward Pass

Backward Pass without Input Gradients

EstimatorQNN

32

How to Run a Backward Pass

Backward Pass without Input Gradients

SamplerQNN

33

How to Run a Backward Pass

Backward Pass with Input Gradients

EstimatorQNN

34

How to Run a Backward Pass

Backward Pass with Input Gradients

SamplerQNN

35

Advanced Functionality

EstimatorQNN with Multiple Observables

36

Advanced Functionality

SamplerQNN with custom interpret

37

Neural Network Classifier & Regressor

In this tutorial we show how the NeuralNetworkClassifier and NeuralNetworkRegressor are

used. Both take as an input a (Quantum) NeuralNetwork and leverage it in a specific context.

In both cases we also provide a pre-configured variant for convenience, the Variational

Quantum Classifier (VQC) and Variational Quantum Regressor (VQR). The tutorial is

structured as follows:

Classification

• Classification with an EstimatorQNN

• Classification with a SamplerQNN

• Variational Quantum Classifier (VQC)

Regression

• Regression with an EstimatorQNN

• Variational Quantum Regressor (VQR)

https://qiskit-community.github.io/qiskit-machine-

learning/tutorials/02_neural_network_classifier_and_regressor.html

38

Neural Network Classifier & Regressor

39

Classification

40

Classification with an EstimatorQNN

41

42

43

Classification with a SamplerQNN

44

45

46

Variational Quantum Classifier (VQC)

47

48

49

Multiple classes with VQC

50

51

52

Regression

53

Regression with an EstimatorQNN

54

55

56

Regression with the Variational Quantum Regressor (VQR)

57

58

59

Training a Quantum Model on a Real Dataset

Exploratory Data Analysis

There are 150 samples (instances) in the dataset.

There are four features (attributes) in each sample.

There are three labels (classes) in the dataset.

The dataset is perfectly balanced, as there are the same number of samples (50) in each class.

60

Training a Classical Machine Learning Model

Our data is classical, meaning it consists of a set of bits, not qubits. We need a way to

encode the data as qubits.

Once the data is loaded, we must immediately apply a parameterized quantum circuit.

61

Training a Quantum Machine Learning Model

62

Training a Quantum Machine Learning Model

Data loading

63

Training a Quantum Machine Learning Model

Ansatz

64

Training a Quantum Machine Learning Model

Optimizer

Sampler

65

Training a Quantum Machine Learning Model

66

Training a Quantum Machine Learning Model

67

Reducing the Number of Features

68

Reducing the Number of Features

69

Reducing the Number of Features

70

Reducing the Number of Features

71

Reducing the Number of Features

72

Conclusion

73

The Quantum Convolution Neural Network

Throughout this tutorial, we discuss a Quantum Convolutional Neural Network (QCNN). We

implement such a QCNN on Qiskit by modeling both the convolutional layers and pooling

layers using a quantum circuit. After building such a network, we train it to differentiate

horizontal and vertical lines from a pixelated image. The following tutorial is thus divided

accordingly;

Differences between a QCNN and CCNN

Components of a QCNN

Data Generation

Building a QCNN

Training our QCNN

Testing our QCNN

74

Differences between a QCNN and CCNN

Classical Convolutional Neural Networks

Classical Convolutional Neural Networks (CCNNs) are a subclass of artificial neural networks

which have the ability to determine particular features and patterns of a given input.

75

Differences between a QCNN and CCNN

Quantum Convolutional Neural Networks

Quantum Convolutional Neural Networks (QCNN) behave in a similar manner to CCNNs.

First, we encode our pixelated image into a quantum circuit using a given feature map.

After encoding our image, we apply alternating convolutional and pooling layers.

76

Components of a QCNN

In theory, one could apply any parametrized circuit for both the convolutional and pooling layers

of our network.

Here, we take a different approach and form our parametrized circuit based on the two qubit

unitary. This states that every unitary matrix in U(4) can be decomposed such that

U=(A1⊗A2)⋅N(α,β,γ)⋅(A3⊗A4)

where Aj∈SU(2), ⊗ is the tensor product, and N(α,β,γ)=exp(i[ασxσx+βσyσy+γσzσz]),

where α,β,γ are the parameters that we can adjust.

From this, it is evident that each unitary depends on 15 parameters and implies that in order for

the QCNN to be able to span the whole Hilbert space, each unitary in our QCNN must contain 15

parameters each.

77

Convolutional Layer

78

Convolutional Layer

79

Pooling Layer

80

Pooling Layer

81

Pooling Layer

82

Data Generation

83

Modeling our QCNN

Data embedding

84

Modeling our QCNN

Ansatz

85

Modeling our QCNN

Ansatz

86

Modeling our QCNN

Ansatz

87

Training our QCNN

88

Training our QCNN

89

Testing our QCNN

TensorFlow Quantum03

91

TensorFlow Quantum

TensorFlow Quantum (TFQ) is a Python framework for quantum machine learning.

TensorFlow Quantum implements the components needed to integrate TensorFlow with

quantum computing hardware. To that end, TensorFlow Quantum introduces two datatype

primitives:

Quantum circuit —This represents a Cirq-defined quantum circuit within TensorFlow. Create

batches of circuits of varying size, similar to batches of different real-valued datapoints.

Pauli sum —Represent linear combinations of tensor products of Pauli operators defined in

Cirq. Like circuits, create batches of operators of varying size.

92

MNIST classification

1. Load the Data

Loads the raw data from Keras.

Filters the dataset to only 3s and 6s.

Downscales the images so they fit can fit in a quantum computer.

Removes any contradictory examples.

Converts the binary images to Cirq circuits.

Converts the Cirq circuits to TensorFlow Quantum circuits.

93

MNIST classification

Loads the raw data from Keras.

94

MNIST classification

Filters the dataset to only 3s and 6s.

95

MNIST classification

Downscales the images so they fit can fit in a quantum computer.

96

MNIST classification

Encode the data as quantum circuits

97

MNIST classification

2. Quantum neural network

98

MNIST classification

2. Quantum neural network

99

MNIST classification

3. Train the model

谢谢！

	幻灯片 1: 量子机器学习：概念与实践
	幻灯片 2
	幻灯片 3
	幻灯片 4
	幻灯片 5
	幻灯片 6
	幻灯片 7
	幻灯片 8
	幻灯片 9
	幻灯片 10
	幻灯片 11
	幻灯片 12
	幻灯片 13
	幻灯片 14
	幻灯片 15: Qiskit Machine Learning
	幻灯片 16
	幻灯片 17
	幻灯片 18
	幻灯片 19
	幻灯片 20
	幻灯片 21
	幻灯片 22
	幻灯片 23
	幻灯片 24
	幻灯片 25
	幻灯片 26
	幻灯片 27
	幻灯片 28
	幻灯片 29
	幻灯片 30
	幻灯片 31
	幻灯片 32
	幻灯片 33
	幻灯片 34
	幻灯片 35
	幻灯片 36
	幻灯片 37
	幻灯片 38
	幻灯片 39
	幻灯片 40
	幻灯片 41
	幻灯片 42
	幻灯片 43
	幻灯片 44
	幻灯片 45
	幻灯片 46
	幻灯片 47
	幻灯片 48
	幻灯片 49
	幻灯片 50
	幻灯片 51
	幻灯片 52
	幻灯片 53
	幻灯片 54
	幻灯片 55
	幻灯片 56
	幻灯片 57
	幻灯片 58
	幻灯片 59
	幻灯片 60
	幻灯片 61
	幻灯片 62
	幻灯片 63
	幻灯片 64
	幻灯片 65
	幻灯片 66
	幻灯片 67
	幻灯片 68
	幻灯片 69
	幻灯片 70
	幻灯片 71
	幻灯片 72
	幻灯片 73
	幻灯片 74
	幻灯片 75
	幻灯片 76
	幻灯片 77
	幻灯片 78
	幻灯片 79
	幻灯片 80
	幻灯片 81
	幻灯片 82
	幻灯片 83
	幻灯片 84
	幻灯片 85
	幻灯片 86
	幻灯片 87
	幻灯片 88
	幻灯片 89
	幻灯片 90: TensorFlow Quantum
	幻灯片 91
	幻灯片 92
	幻灯片 93
	幻灯片 94
	幻灯片 95
	幻灯片 96
	幻灯片 97
	幻灯片 98
	幻灯片 99
	幻灯片 100

