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Overview

ML is a class of advanced algorithms that perform a certain task. Given a large number of 

inputs and desired outputs, an ML model can be trained to make predictions on unseen data. 

If it is executed on quantum computers, it becomes a quantum ML algorithm.
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Overview

Selection of the architecture of a parametric quantum circuit (PQC), also known as ansatz.

Select the architecture of a PQC by specifying a sequence of parametrized quantum gates

operation of the PQC is defined by a unitary matrix U(θ), which is dependent on a vector of free 

parameters θ

Parametric optimization

The optimizer is fed measurements of the quantum state produced by the PQC, typically in the 

form of estimated expectations of observables; and it produces updates to the parameter 

vector θ.
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Parametrized Quantum Circuits

Variational or Parametrized Quantum Circuits (PQCs) are specific types of quantum 

algorithms that depend on free parameters. 

PQCs allow us to utilize the existing quantum computers to their full extent. 

In the context of QML, PQCs are used either to encode the data, where the parameters are 

determined by the data being encoded, or as a quantum model, where the parameters are 

determined by an optimization process.
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Categorization of QML Approaches

Before diving into the details of QML algorithms, it is important to characterize different 

approaches based on the type of data and type of processor used to solve the problem.
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Categorization of QML Approaches

CC refers to processing Classical data using Classical computers, but using algorithms 

inspired by quantum computing.

CQ refers to processing Classical data using Quantum machine learning algorithms.

Main focus

QC refers to processing Quantum data using Classical machine learning algorithms.

Active area

QQ refers to processing Quantum data using Quantum machine learning algorithms. It is 

also known as Fully Quantum Machine Learning (FQML).

Future area
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Categorization of QML Approaches

CC refers to processing Classical data using Classical computers, but using algorithms 

inspired by quantum computing.
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Categorization of QML Approaches

CQ refers to processing Classical data using Quantum machine learning algorithms.

Main focus
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Categorization of QML Approaches

QC refers to processing Quantum data using Classical machine learning algorithms.

In the QC case, quantum data are first measured, and then the classical measurement outputs 

are processed by a classical machine learning model.
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Quantum Neural Networks

Quantum Neural Networks (QNNs) are computational Artificial Neural Network (ANN) models 

that are based on the principles of quantum mechanics.

The quantum circuit contains a feature map module,

an Ansatz module with trainable weights,

Measurements are conducted to obtain the outputs.
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Quantum Neural Networks

During the NISQ era, the main focus is on Hybrid Quantum Neural Networks (HQNNs).
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Quantum Neural Networks

Quantum Convolutional Neural Networks

The structure of a classical CNN consists of applying alternating convolutional layers (with an 

activation function) and pooling layers, typically followed by fully-connected layers before the 

output is generated.



Qiskit Machine Learning

• Qiskit is pronounced "kiss-kit" , though you

may also hear it called "kwis-kit".

02
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Overview

Qiskit Machine Learning introduces fundamental computational building blocks, such as 

Quantum Kernels and Quantum Neural Networks, used in various applications including 

classification and regression.

This library is part of the Qiskit Community ecosystem, a collection of high-level codes that 

are based on the Qiskit software development kit. 

The Qiskit Machine Learning framework aims to be:

User-friendly: allowing users to quickly and easily prototype quantum machine learning models 

without the need of extensive quantum computing knowledge

Flexible: providing tools and functionalities to conduct proof-of-concepts and innovative 

research in quantum machine learning for both beginners and experts

Extensible: facilitating the integration of new cutting-edge features leveraging Qiskit’s 

architectures, patterns and related services
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What are the main features of Qiskit Machine Learning?

Kernel-based methods

Quantum Neural Networks (QNNs)

Qiskit Machine Learning defines a generic interface for neural networks, implemented by two

core (derived) primitives: EstimatorQNN and SamplerQNN.

Integration with PyTorch

The TorchConnector integrates QNNs with PyTorch.
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Quantum Neural Networks

Quantum vs. Classical Neural Networks

Classical neural networks are algorithmic models inspired by the human brain that can be 

trained to recognize patterns in data and learn to solve complex problems.

The motivation behind quantum machine learning (QML) is to integrate notions from quantum 

computing and classical machine learning to open the way for new and improved learning 

schemes.

https://qiskit-community.github.io/qiskit-machine-learning/tutorials/01_neural_networks.html
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Quantum Neural Networks

Because they lie at an intersection between two fields, QNNs can be viewed from two 

perspectives:

From a machine learning perspective, QNNs are, once again, algorithmic models that can be 

trained to find hidden patterns in data in a similar manner to their classical counterparts. 

From a quantum computing perspective, QNNs are quantum algorithms based on 

parametrized quantum circuits that can be trained in a variational manner using classical 

optimizers.
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Implementation in qiskit-machine-learning

The QNNs in qiskit-machine-learning are meant as application-agnostic computational units 

that can be used for different use cases, and their setup will depend on the application they 

are needed for. The module contains an interface for the QNNs and two specific 

implementations:

NeuralNetwork: 

• The interface for neural networks. This is an abstract class all QNNs inherit from.

EstimatorQNN: 

• A network based on the evaluation of quantum mechanical observables.

SamplerQNN: 

• A network based on the samples resulting from measuring a quantum circuit.
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EstimatorQNN

The EstimatorQNN takes in a parametrized quantum circuit as input, as well as an optional 

quantum mechanical observable, and outputs expectation value computations for the 

forward pass. The EstimatorQNN also accepts lists of observables to construct more 

complex QNNs.



22

EstimatorQNN

We can now create an observable to define the expectation value computation. If not set, 

then the EstimatorQNN will automatically create the default observable Z⊗n. Here, n is the 

number of qubits of the quantum circuit. 

In this example, we will change things up and use the Y⊗n observable:
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EstimatorQNN

Together with the quantum circuit defined above, and the observable we have created, the 

EstimatorQNN constructor takes in the following keyword arguments:

estimator

pass_manager

input_params

weight_params
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SamplerQNN

The SamplerQNN is instantiated in a similar way to the EstimatorQNN, but because it 

directly consumes samples from measuring the quantum circuit, it does not require a 

custom observable.

Let’s create a different quantum circuit for the SamplerQNN. In this case, we will have two 

input parameters and four trainable weights that parametrize a two-local circuit.
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SamplerQNN
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SamplerQNN

Similarly to the EstimatorQNN, we must specify inputs and weights when instantiating the 

SamplerQNN. In this case, the keyword arguments will be:

Sampler

pass_manager

input_params

weight_params
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How to Run a Forward Pass

EstimatorQNN Example
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How to Run a Forward Pass

EstimatorQNN Example

Non-batched Forward Pass

Batched Forward Pass
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How to Run a Forward Pass

SamplerQNN Example
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How to Run a Forward Pass

SamplerQNN Example

Non-batched Forward Pass

Batched Forward Pass
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How to Run a Backward Pass

Backward Pass without Input Gradients

EstimatorQNN
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How to Run a Backward Pass

Backward Pass without Input Gradients

SamplerQNN
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How to Run a Backward Pass

Backward Pass with Input Gradients

EstimatorQNN
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How to Run a Backward Pass

Backward Pass with Input Gradients

SamplerQNN
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Advanced Functionality

EstimatorQNN with Multiple Observables
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Advanced Functionality

SamplerQNN with custom interpret
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Neural Network Classifier & Regressor

In this tutorial we show how the NeuralNetworkClassifier and NeuralNetworkRegressor are 

used. Both take as an input a (Quantum) NeuralNetwork and leverage it in a specific context. 

In both cases we also provide a pre-configured variant for convenience, the Variational 

Quantum Classifier (VQC) and Variational Quantum Regressor (VQR). The tutorial is 

structured as follows:

Classification

• Classification with an EstimatorQNN

• Classification with a SamplerQNN

• Variational Quantum Classifier (VQC)

Regression

• Regression with an EstimatorQNN

• Variational Quantum Regressor (VQR)

https://qiskit-community.github.io/qiskit-machine-

learning/tutorials/02_neural_network_classifier_and_regressor.html
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Neural Network Classifier & Regressor
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Classification
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Classification with an EstimatorQNN
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Classification with a SamplerQNN
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Variational Quantum Classifier (VQC)
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Multiple classes with VQC



50



51



52

Regression
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Regression with an EstimatorQNN
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Regression with the Variational Quantum Regressor (VQR)
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Training a Quantum Model on a Real Dataset

Exploratory Data Analysis

There are 150 samples (instances) in the dataset.

There are four features (attributes) in each sample.

There are three labels (classes) in the dataset.

The dataset is perfectly balanced, as there are the same number of samples (50) in each class.
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Training a Classical Machine Learning Model



Our data is classical, meaning it consists of a set of bits, not qubits. We need a way to 

encode the data as qubits.

Once the data is loaded, we must immediately apply a parameterized quantum circuit.

61

Training a Quantum Machine Learning Model
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Training a Quantum Machine Learning Model

Data loading
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Training a Quantum Machine Learning Model

Ansatz
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Training a Quantum Machine Learning Model

Optimizer

Sampler
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Training a Quantum Machine Learning Model
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Training a Quantum Machine Learning Model
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Reducing the Number of Features
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Reducing the Number of Features
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Reducing the Number of Features
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Reducing the Number of Features
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Reducing the Number of Features
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Conclusion
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The Quantum Convolution Neural Network

Throughout this tutorial, we discuss a Quantum Convolutional Neural Network (QCNN). We 

implement such a QCNN on Qiskit by modeling both the convolutional layers and pooling 

layers using a quantum circuit. After building such a network, we train it to differentiate 

horizontal and vertical lines from a pixelated image. The following tutorial is thus divided 

accordingly;

Differences between a QCNN and CCNN

Components of a QCNN

Data Generation

Building a QCNN

Training our QCNN

Testing our QCNN
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Differences between a QCNN and CCNN

Classical Convolutional Neural Networks

Classical Convolutional Neural Networks (CCNNs) are a subclass of artificial neural networks 

which have the ability to determine particular features and patterns of a given input.
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Differences between a QCNN and CCNN

Quantum Convolutional Neural Networks

Quantum Convolutional Neural Networks (QCNN) behave in a similar manner to CCNNs.

First, we encode our pixelated image into a quantum circuit using a given feature map.

After encoding our image, we apply alternating convolutional and pooling layers.
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Components of a QCNN

In theory, one could apply any parametrized circuit for both the convolutional and pooling layers 

of our network. 

Here, we take a different approach and form our parametrized circuit based on the two qubit

unitary. This states that every unitary matrix in U(4) can be decomposed such that

U=(A1⊗A2)⋅N(α,β,γ)⋅(A3⊗A4)

where Aj∈SU(2), ⊗ is the tensor product, and N(α,β,γ)=exp(i[ασxσx+βσyσy+γσzσz]), 

where α,β,γ are the parameters that we can adjust.

From this, it is evident that each unitary depends on 15 parameters and implies that in order for 

the QCNN to be able to span the whole Hilbert space, each unitary in our QCNN must contain 15 

parameters each.
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Convolutional Layer
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Convolutional Layer
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Pooling Layer
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Pooling Layer
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Pooling Layer
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Data Generation



83

Modeling our QCNN

Data embedding
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Modeling our QCNN

Ansatz
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Modeling our QCNN

Ansatz
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Modeling our QCNN

Ansatz
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Training our QCNN
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Training our QCNN
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Testing our QCNN



TensorFlow Quantum03
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TensorFlow Quantum

TensorFlow Quantum (TFQ) is a Python framework for quantum machine learning. 

TensorFlow Quantum implements the components needed to integrate TensorFlow with 

quantum computing hardware. To that end, TensorFlow Quantum introduces two datatype 

primitives:

Quantum circuit —This represents a Cirq-defined quantum circuit within TensorFlow. Create 

batches of circuits of varying size, similar to batches of different real-valued datapoints.

Pauli sum —Represent linear combinations of tensor products of Pauli operators defined in 

Cirq. Like circuits, create batches of operators of varying size.
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MNIST classification

1. Load the Data

Loads the raw data from Keras.

Filters the dataset to only 3s and 6s.

Downscales the images so they fit can fit in a quantum computer.

Removes any contradictory examples.

Converts the binary images to Cirq circuits.

Converts the Cirq circuits to TensorFlow Quantum circuits.
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MNIST classification

Loads the raw data from Keras.
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MNIST classification

Filters the dataset to only 3s and 6s.
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MNIST classification

Downscales the images so they fit can fit in a quantum computer.
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MNIST classification

Encode the data as quantum circuits
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MNIST classification

2. Quantum neural network
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MNIST classification

2. Quantum neural network
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MNIST classification

3. Train the model



谢谢！
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