YA RNt Jﬁ

EIME: mTRRUSIIERA (2)

5% Bl2i% 8%
IEIRFESTIER
LBZERF

W‘Iﬁﬁﬂ
hﬁﬁﬂﬂﬁwwm‘

Z w / N

|D&§¥EM&

&%E

i
7
|

01

| | P
.

| \ L
WETIERE = —

/Y\J%:Sﬂdﬁ b

How NICs work

Ethernet Network Interface Cards (NICs) are
used to
attach hosts to Ethernet Local Area Networks
(LANS).

@® NICs are deployed everywhere - laptops, PCs,
machines in data centers - and many vendors

and models are available - e.g. Intel, Mellanox,
Broadcom, Realtek, Qualcomm.

/Y\J%:Sﬂdﬁ b

How NICs work

CPU Package ()
Core > 5
ST
5 E RAM
=3
.] (2) DMA
[Host Bridge) .
(1) MMIO (3)
and P1O Interrupt Local I/0 Bus
Y

[1/0 Dcviccﬂ [I/0 Device ‘j [I/O Device]

Three ways that I/O devices can interact with the CPU and the memory

/\T\%@ﬂdﬁ b

How NICs work

P10 and MMIO: port-mapped I/O(PI1O) and memory-mapped I/O(MMIO) are two most basic method
for CPUs to interact with I/O devices. The BIOS/UEFI associate the registers of the 1/O devices with
unique, dedicated addresses.

® P10: the addresses of PlO are called “ports”, they are separated from the memory address space
and have their own dedicated physical bus. Such addresses are typically limited to 16 bits. They
are used via the special OUT and IN x86 instructions, which write/read 1-4 bytes to/from the 1/O
devices.

® MMIO: the device registers are associated with physical memory addresses,
and they are referred to using regular load and store x86 operations through the memory bus. The
association between device registers and memory addresses is predetermined on startup.

/Y\J%:Sﬂdﬁ b

How NICs work

DMA: The core only initiates the DMA operation, asking the 1/O
device to asynchronously notify it when the operation completes (via an interrupt, the core is then
free to engage in other work.

® Devices do DMA operation with bus addresses. In some systems, bus addresses are identical to
CPU physical addresses, but in general they are not. IOMMUs and host bridges can produce
arbitrary mappings between physical and bus addresses.

® Interrupts: 1/O devices trigger asynchronous event notifications directed at the CPU cores by
ISsuing interrupts.

/Y\J%:Sﬂdﬁ b

/Y\J%:Sﬂdﬁ b

/O Virtualization

I/O Virtualization is an essential component in the virtualization Framework. (CPU, Memory

Virtualization)

physical connections.

® |/O virtualization environments are created by abstracting the upper layer protocols from the

-

Application Application
User L PP ‘) User . PP il J
i ' I’ k!
Device Driver Device Driver
Kernel \) (Gruest Kernel)
“ Devi Y Software-based Device Y |
evice ware-based Device
Hardware \ J Hyvpervisor |)

/\T\%@ﬂdﬁ b

/O Virtualization

Software based I/O Virtualization:

* Rich set of virtualization features

/O Sharing, Security, Isolation, Mobility.
« Simplified management
« Encapsulate VM state->VM Suspend/Resume, Live Upgrade and Live migration.
Hardware assisted I/O Virtualization:
* High performance 1/O: throughput, latency.

» Forgo certain virtualization benefits.

/Y\J%:Sﬂdﬁ b

10

/O Virtualization

@ Virtual 1/0 implementation:
* |/O interposition(l/O emulation and Paravirtualization)

 Direct Device Assignment(Passthrough)

Cruest Guest Gruest Guest Guest Guest
VMO VMI VM2 VMO VMI VM2
_ﬂ__.—-"'h'x__ __-"h““x
10 | 10
Hypervisor path Hypervisor ‘ path
Host Hardware Host Hardware F:’/
evice
(a) Emulation/paravirtualization (b) Direct device assignment

/Y\J%:Sﬂdﬁ b

11

How NICs are emulated

@® Why devices need to be emulated in a virtualized environment ?

@® A guest operating system does not cease to behave as an operating system merely because it runs
as a guest. It still believes that it exclusively controls all the physical I/0O devices, and it discovers,
Initializes, and drives these devices exactly as bare metal machine.

Consider the system’s hard drive controller. This device must be safely shared between several
guest OS and the hypervisor.

® Compare RAM access with Register access.

/Y\J%:Sﬂdﬁ b

12

How NICs are emulated

How devices can be emulated in a virtualized environment ?

@ 1/0 interposition

* The hypervisor must prevent guests from accessing real devices while
sustaining the illusion that devices can be accessed; the hypervisor must therefore “fake” I/O
devices for its guests, denoted as virtual I/O devices.

» The hypervisor achieves this goal by trapping all the guest’s I/O-related operations and by
emulating them to achieve the desired effect.

/Y\J%:Sﬂdﬁ

13

How NICs are emulated

MMIO: Guest’'s MMIOs are regular loads/stores from/to guest memory pages, so the hypervisor
can arrange for these memory accesses to trap by mapping the pages as reserved/non-present
(both loads and stores trigger exits) or as read-only (only stores trigger exits).

® P10: Guest’s PIOs are privileged instructions, and the hypervisor can configure the guest’'s VMCS
to trap upon them.

® DMA: Emulating DMAs to/from guest memory is trivial for the hypervisor, because it can read from
and write to this memory as it pleases.

Interrupt: the hypervisor can use the VMCS to inject interrupts
to the guest. Each interrupt causes at least two VM-EXxit(direct interrupt delivery and VT-d posted
interrupt).

/Y\J%:Sﬂdﬁ b

14

How NICs are emulated

|. v . |Q... I,-' S - 1 JI, .;..‘ guest
(a) baseline f--------- §----- y auaEIDLIIEDn DD y=----- R
physical interrupt interrupt | J
interrupt in]octi:n completion host
. .t e guest
®) By [L= R ol
vy interrupt [, host
completion
ELI . > guest
(c) delivery & | e ——————
completion host
(d) bare-metal . %

Figure 1. Exits during interrupt handling

ASPLOS’12 ELI; Bare-Metal Performance for 1/O
Virtualization

/Y\J%:Sﬂdﬁ

15

KVM
Exit handler

<
I VM

IR[EIFEFE

| G

FBRRAXFH TSR HARGHFRA (IPADS@SJTU)

/\T\%@ﬂdﬁ b

16

fd = open(“/dev/kvm”, O_RDWR);

Event handling:
ioctl(fd, KVM_CREATE_VM, ...);

- timers
ioctl(fd, KYM_CREATE_VCPU, ...); - 1/0
for(;;) { + monitor commands

ioctl(fd, KVM_RUN, ...);
switch(exit_reason) {
case EXIT_REASON |0 _INSTRUCTION: ... break;
case EXIT_REASON_TASK_SWITCH: ... break;
case EXIT_REASON_PENDING_INTERRUPT: ... break;

Event handling via select/poll system
i calls to wait on multiple file descriptors

How NICs are emulated

® Frontend: QEMU emulation layer that understands

the device’ s semantics and interacts with the driver

QEMU process
at the guest. et
i memory 1000 | 1A
Backend: the software used by the frontend to frontend senacun - |backend
implement the functionality of the virtual device using
the physical resources of the host system. o eameon [wieeen |
KVM module TUN/TAP driver

@® TAP: a virtual Ethernet network device, implemented
in the kernel, that can forward Ethernet frames to and

from the process that connects to it.

/Y\J%:Sﬂdﬁ b

18

How NICs are emulated

® A write of guest OS to the TDT register - or to any other
register - causes the CPU to exit.

@ return in the KVM module (host kernel-space) that was -~
process
executing an ioctl (KVM_RUN) syscall for QEMU. A
memory 1000 | TAP

® When the ioctl returns, QEMU figures out that the VM exit frongend | sendiouf) | ackend

was due to a register access for an e1000 device and

invokes the e1000 frontend. C locimMRUNY | wiebud |
The e1000 handler for TDT writes collects all the produced VM modle TON/TAP driver

TX descriptors. For each one, translates the guest physical

address of the Ethernet frame into host virtual address,
sends the frame to a network backend, writes back the
descriptor (i.e. DD bit) and increments TDH.

® Once all descriptors are consumed, a Tx interrupt is injected 7N N\T=SJT m
by KVM module. 19

static void start xmit(El000State *s)

{
dma_addr_t base;
struct el000 tx desc desc;
while (s->mac_reg[TDH] != s->mac_reg[TDT]) {
base = tx _desc base(s) +
sizeof(struct el1l000 tx desc) * s->mac_reg[TDH];
pci dma read(d, base, &desc, sizeof(desc));
process_tx desc(s, &desc); //set DD bit, send packet to TAP
if (++s->mac_reg[TDH] * sizeof(desc) >= s->mac_reg[TDLEN])
s->mac_reg[TDH] = ©; // advance TDH
}
}

QEMU: /hw/net/el000.c

20

How NICs are emulated

The e1000 emulated TX processing is completely synchronous, differently from what happens with
a real e1000 NIC, where the NIC hardware runs in parallel to the CPU running the sending
application and the driver code.

® Each notification causes one VM-exit.

® Each interrupt causes at least two VM-exits. Interrupt Injection and completion EOI write.

WCPU thread ----| guestcode | VM-exit | KVM frontend + backend KM | VM-enter | guest code |-- -

TDT write return from iactl()
ioctl()

/Y\J%:Sﬂdﬁ b

21

03

ﬂ\
: P
| &J l “ £

IOIREFERIME — —

/Y\J%:Sﬂdﬁ b

/O Emulation

Guest OS believes exclusive control on I/O devices.
® Hypervisor traps the 1/O related operations and emulates them

® Strengths:
 Full virtualization, no modification to the guest OS.
« Software device states are easy to encapsulate->flexibility:
« dynamically decouple/recouple a physical device from/to a VM
» Live upgrading, reconfiguring, live migration.
» 1/O consolidation, improving efficiency, reducing cost.

» |/O aggregation: better performance and robustness.

® Weaknesses:
 Efficient virtualization was not considered for hardware design.

» Substantial performance overheads.

/Y\J%:Sﬂdﬁ

23

/O paravirtualization ideas

® While 1/0 emulation implements a correct behavior, it might induce substantial performance
overheads, because efficient emulation was not recognized as a desirable feature when the
physical device was designed.

@® Virtualization overheads caused by inefficient interfaces of physical devices could, in principle, be
eliminated, if we redesign the devices to have virtualization-friendlier interfaces.

® /O paravirtualization: guests and hosts agree upon a (virtual) device specification to be used for
I/O emulation, with the explicit goal of minimizing overheads.

/Y\J%:Sﬂdﬁ b

24

producer/consumer system

& |s it possible to build a better - simpler and more efficient - producer/consumer system
that matches the same interfaces as the composite e1000 driver + frontend?

Hypervisor
net backend

1000
frontend

1000
driver

Guest

network stack

/Y\J%:Sﬂdﬁ

The VirtlO Standard

@ The framework of paravirtual I/0 devices of KVM/QEMU is called VirtlO, offering a common guest-

host interface and communication mechanism.

———————————— - - —

1/0 driver
API

I/0 backend

Hypervisor API

/0 backend |

r
L

virtio driver Guest kernel

frontend virtio
interface

I
J

1

J

J

J A
L virtio
1

J

!

J

1

n

A ———

/Y\J%:Sﬂdﬁ b

26

The VirtlO Standard

® The same principles can be applied also to other forms of virtualized I/O (block storage, serial

ports, ...), since all forms of I/O can be seen as producer/consumer systems that exchange

Guest Linu‘ly Virtio \

mesSages.

Virtio-net Virtio-blk Virtio-console Virtio-balloon
" '/\ ¢ [Sldrivers/cha - _ .
1 1N IR IR
\/ \/ . \/) \/
Virtio-net Virtio-blk Virtio-console Virtio-balloon

\ Virtio /
Host QEMU e

/Y\J%:Sﬂdﬁ

27

The VirtlO Standard

® The task of a VirtlO driver is to convert the OS-specific representation of the message (e.g. a skb

object for a Linux network driver) to the VirtlO message format, and the other way around.

® The virtio-net frontend performs the same task on the hypervisor side, converting VirtlO messages
from/to formats understandable to the backend.

Conversion Conversion

HV backend virtio-net driver guest kernel

frontend implementation implementation

| |
| |
| |
virtio-net : HV virtio I guest virtio
| |
| |
| |
! I

HY net
backend
APIL

HY virtio guest-HY Euest NIC driver
APL interface virtio API APL

/Y\J%:Sﬂdﬁ b

Scatter-Gather list

® VirtlO exchanges data using Scatter-Gather (SG) lists.
Memory
® An SG list is conceptually a list of (physical) address SIS Tegmen 2
and length couples and is usually implemented as an __________ e
array. Y
T o777 fragment#3
. LR
SG-list

/Y\J%:Sﬂdﬁ

29

Virtqueues

= Central to VirtlO is the Virtqueue (VQ) abstraction. A VQ is a queue where SGs are posted
by the guest driver to be consumed by the hypervisor. Output SGs are used to send data to
the hypervisor, while input SGs are used to receive data from the hypervisor.

= A device can use one or more queues, and the number of queues may be negotiated.

HV backend virtio-net driver guest kernel

frontend

virtg Uele #2

[
[
[
|
[
[
virtio-net : virtg liede #1
[
[
[
|
[
[
[

HY nat
backend
APIL

HV wirtio Euest NIC driver
APL virtio API APL

/Y\J%:Sﬂdﬁ b

30

Virtqueues

= When a guest driver wants to produce a SG, it calls the add buf VQ method, also passing a
token. On the other side, the HV pops the SG, consumes it (interacting with a backend), and

pushes it back in the VQ.

= The guest polls for used SGs by calling the get buf VQ method, so that can perform
cleanup operations. The token - which is opaque for the VQ and is not passed to the HV -
can be used by the driver to match produced SGs (requests) against consumed ones
(responses). Tokens allow for out-of-order SG consumption (e.g. useful with block 1/0).

HV FRONTEND

[l pop(SG) =&

CONSUme

[3] push(SG)

=

GUEST DRIVER

[1] add_buf{5G, Token)

[4] get_bufi) -» Token

/Y\J%:Sﬂdﬁ

31

Virtqueues

virtio driver

A
add_buf l get_buf
virtqueue write virtqueue read
vring ‘ \
IN/OUT '
kick pop push
\ 4 . 4

virtio device

/Y\J%Eﬂdﬁ b

32

The VRIng implementation

® Three data structures used to describe one VirtQueue:

. DESCRIPTOR TABLE
» Descriptor Table ADDRESS LENGTH FLAGS NEXT
« Avalil Rin 0 1
9 1)
« Used Ring 2
3 4
® Multi-fragments SG i 5 %
5
® QOut-of-order SG consumption
® Optimized cache usage.
AVAIL
RING 9 6] 3 0| 2 "
f
avail-idx
o L] 1
!
used-idx
S INT=rsutull 1

33

The VRIng implementation

® Descriptor Table

DESCRIPTOR TABLE
« Physical address and length of a buffer. ADDRESS e acs o
« Next pointer for chained descriptors. 0 ‘)
1
« Flags(Input or Output). 2
. 3),
® Write only by Guest. 4 5)
5
® An SG with N fragments is mapped to N descs.
e 9 sl3lofz2].
f
avail-idx
A NOEEE
!
used-idx

/‘\T\%@ﬂdﬁ b

The VRIng implementation

® Used Ring
, DESCRIPTOR TABLE
« Used by the hypervisor to return consumed SGs to AODRESS et hcs e
the guest. 0 1)
 Each slot contains the head of the consumed desc. ;
« Used-idx like the head register of e1000 ring but 3 :)
. . . 4
different. It is stored in memory, not a MMIO .)
register.
AVAIL
RING 9 63]o0f2].
f
avail-idx
USED
RING gl -
!
used-idx

/‘\T\%@ﬂdﬁ b

35

The VRIng implementation

® Avail Ring
« Used by the guest to expose produced SGs.

« Each slot contains a head which is an index in the
desc table-to the first desc of a SG.

« Avail-idx like the tail register of e1000 ring but
different. It is stored in memory, not a MMIO
register.

® Decouple counting of available SGs from
notification.

DESCRIPTOR TABLE
ADDRESS LENGTH FLAGS NEXT
0 1
1
2
3 4
4 5
5
AVAIL
RING 9 Bl 3 2 T
avail-idx
USED 9
RING -
used-idx

/‘\T\%@ﬂdﬁ b

36

Minimizing notifications

= When the driver wants the HV to start consuming SGs, it notifies by using a VQ kick
(implemented with a register write). Similarly, when the HV wants to notify the driver about
consumed SGs, it uses a VQ interrupt.

= The kick and interrupt operations are part of the VirtlO interface. The driver should produce
as many SGs as possible before kicking (principle E). Similarly, the HV should consume as
many SGs as possible before sending an interrupt. In this way, notification costs are
amortized over many SGs.

HV FRONTEND GUEST DRIVER

kick callback =t = = = - - kick
VIRTQUEUE
interrupt ——— = ===——————=—==== . T;ﬁgaucit

/Y\J%:Sﬂdﬁ b

37

Minimizing notifications

Key observations:

* Once the HV consumer thread has been woken up, VQ kicks can be disabled to temporarily
switch to polled mode. When all the pending SGs have been consumed, VQ kicks can be
enabled again.

« Once the guest cleanup thread has been woken up, VQ interrupts can be disabled to
temporarily switch to polled mode. When all the consumed SGs have been cleaned up, VQ
interrupts can be enabled again.

@® This strategy (similar to Linux NAPI) allows both producer and consumer to temporarily switch from
interrupt mode to polled mode. In this way, notifications (kicks and interrupts) may be amortized
over many packets.

/Y\J%:Sﬂdﬁ b

38

Minimizing notifications

®The blue thread produces requests in parallel
to the green thread consuming them.

@ The green thread returns consumed requests
in parallel to the thread cleaning them

up.
@ While the threads run, notifications are
disabled.

@ This scheme is general and can be applied to
any paravirtualized 1/O device.

¢ void request(Request r) {

: sg=to_scatter_gather(r);
virtqueue.add_buf(sg, r); i/
virtqueue.kick(); = = = = = = = —~".

: void interrupt_callback() { :
: virtqueue.disable_interruptsDs .
guest_worker_schedule(); N

. void guest_polling() {
: while (r = virtqueue.get_buf()) {
clean_up(r);
}
virtqueue.enable_interrupts();
if (virtqueue.more_used()) {
virtqueue.disable_interrupts(); :

1: virtqueue.disable_kicks();

, void kick_callback() {
: hv_worker_schedule();

|
{ void hv _polrlngO{
while (sg = virtqueue.pop()) {
[consume_request(sg);
S~ virtqueue.push(sg);
Svirtqueue.interrupt();
}
virtqueue.enable_kicks();
if (virtqueue.more_avail()) {
virtqueue.disable_kicks();
hv_worker_schedule();

}

guest_worker_schedule();

/Y\i%’“:%ﬂdﬁ

39

Performance Test

Metric ‘ ¢1000 | Virtio-net | Ratio
Guest throughput (Mbps) 239 5230 | 22x
exits per second 33,783 1,126 | 1/30x
interrupts per second 3,667 257 | 1/14x
TCP segments per exit 1/9 25| 225x
per interrupt 1 118 | 118x
per second 3,669 30,252 8x
avg. size (bytes) 8,168 21,611 3x
avg. processing time (cycles) | 652,443 79,132 | 1/8x
Ethernet frames | per second 23,804 - -
avg. size (bytes) 1,259 - -

Netperf TCP stream running in a Linux 3.13 VM on top of
Linux/KVM (same version) and QEMU 2.2, equipped with
1000 or virtio-net NICs, on a Dell PowerEdge R610 host

with a 2.40GHz Xeon E5620 CPU.

/Y\J%:Sﬂdﬁ

40

/O paravirtualization

Redesign virtual device and its interface.

Guest uses specialized driver with minimal overhead associated with emulation.

Strengths:
= Most virtualization benefits.

= Much better performance than I/O emulation.

Weaknesses:
= Performance gap with bare-metal machines.(Especially large packets)

» Modified guest OS make it less portable than full virtualization.
» [nstallation of paravirtual drivers.

= |Implementation for each type of OS.

/Y\J%:Sﬂdﬁ

41

N\

REEE @ —

/Y\J%:Sﬂdﬁ b

Direct Device Assignment

Device emulation and paravirtualization both incur virtualization overheads but provide safe virtual
I/O and the benefits of I/O interposition.

® Given a physical device d, the hypervisor may decide to assign the right to access d exclusively to
some specific virtual machine v, such that no other VM, and not even the hypervisor, are allowed
access. This approach, is denoted as direct device assignment.

Guest || Guest || Guest Guest || Guest || Guest
VMO || VMI VM2 VMO || VMI VM2
P
—— 110 : —— 8
Hypervisor path Hypervisor path
Host Hardware Host Hardware d IC
evice
(a) Emulation/paravirtualization (b) Direct device assignment

/\T\%@ﬂdﬁ b

43

Direct Device Assignment

» Problems of Direct Device Assignment

= Lack of scalability

> Extra physical I/O devices are inherently limited in quantity. The number of virtual machines that a modern
server can support is much larger than the number of physical I/O devices that it can house.

= |solation and security

> If v controls a device, then v can program the device to perform DMA operations directed at any physical
memory location. In other words, by assigning d to v, we allow v to (indirectly) access the entire physical
memory, including areas belonging to other VMs or the hypervisor. Therefore, by utilizing naive direct device
assignment, we essentially eliminate isolation between VMs.

/Y\J%:Sﬂdﬁ b

44

Single Root I/O Virtualization

® The SR-IOV specification from PCI-SIG defines the
extensions to the PCI Express (PCle) specification

SRiov [sRiov A,
® One physical function(PF) ->multiple virtual Function || Function |
function(VF), each with own DMA streams, interrupts.

suite that enable multiple virtual machines (VMs) to

share the same PCle physical hardware resources.

Hypervisor Virtual Switch

K -

/Y\J%:Sﬂdﬁ b

45

Single Root I/O Virtualization

@® An SRIOV-capable I/0O device can present multiple instances of itself to software. Each instance
can then be assignment to a different VM, to be used directly (and exclusively) by that VM, without
any software intermediary. Traditionally, it is the role of the operating system to multiplex the 1/O
devices. Conversely, an SRIOV device knows how to multiplex itself at the hardware level.

Hypervisor Guest Guest

PF device driver] "UF device d:river} [VF device driver
A AN ;f\
] d] |- o’ |:
r b .
PF VFO VF1

L] L] L]

L . . L]

Embedded Ethernet Switch

/Y\J%:Sﬂdﬁ b

46

Throughput [Gbps]

Exits per second [thousands]

0

1] T | 1
" === SRIOV
virtio-net 1.78x
[e 1000
i 1.68x
l.3lx
. " 1 1
e e
' L L 1 '
256B IKB 4KB 16KB 64KB

Message Size

1
256B

IKB

4KB

I6KB 64KB

/\T\%ﬁﬂdﬁ

47

Guest VM Guest VM App .
App . _t ’ User
~ Kernel
1 Packet Buffers
[Packet Buffers VF Driver (e.g
Backend dnver N R J DMA
.
. o
DMA ; \
Q-Iypervisor / Hypervisor

[

(a) Para-Virtualized I/0

VF

(b) SR-IOV with Intel IXGBEVF Driver

/Y\J%:Sﬂdﬁ

Summary

@® Strengths:
« Self-virtualized hardware, no emulation overhead
« High performance: high throughput, low latency

» Mitigate Scalability Problem(intel 710 series 1 PF supports 64 VF)

Weaknesses:
* Less flexibility:
« Memory optimization disabled.

 Live migration problems:
 Dirty page loss during pre-copy iteration

» Device state migration

/Y\J%:Sﬂdﬁ b

49

Summary

@ Emulation (Full Virtualization)
« Best option for correctness and abstraction

« Heavy performance overhead

Paravirtualization
« Optimize driver and virtual device interaction

« Guestis "“aware” of virtualization

Direct Device Assignment
« Best option for performance

« Strong coupling with hardware

/Y\J%:Sﬂdﬁ b

50

| | P
.

| N\ 2
GPURZIYE -

/Y\J%:Sﬂdﬁ b

GPU R MEAYEIR

@ B8Rl . VMware SVGA 3D software renderer, Citrix GPU accelerator
BEEM A VMware Virtual Dedicated Graphics Acceleration (vDGA)
BEiEHE: SR-IOV, gvirt

gl HilRkdg HExE
(AER) (Pass through) (SR-1OV)

BRRFRS BERRERG

| |
| |
BRBHES | | BrakEs| | | Br86Es |
N =7 & PF = | - o | =), B AR
BRI e el BARHES i L o olay
| |
l 1
* T | |
\ X | |
141 e | | reeee
i3 [zomoms] | | | [RaER
|
X | |
| |
VR P ' \ ‘ vEvE | [ZaeE BRI
VESE : VERE : (PF) (W) (W)
w | ‘

7 INT=sUTull]

52

PSRPL(FRF)

® HEIL, TTiEEIEHERGPURIMLA

Management
OS

BIgSEERH, xen WHTEBEN | R

Application Application Application

" Guest OS GuestOS g Guest OS

[Xen-aware (Xen-aware CXen-aware
- - —_ RN device drivers device drivers device drivers
®gertm, WFS, CPULAEMN A
Xen
" . Domain0 control Virtual x86 Virtual physical | |\ oo vork | | Virtual block
MERE(E, SDBHTTRIABIRIAAIQoS || inerace G Lol i

X86 hardware

/\T\%@ﬂdﬁ b

53

BB G (RF)

~

ﬁiq:_/l\ Ej:u*ngj:%zm IJ__—l_/I\G PUEE1¢ ' (Virtual Machine \ chine \]chine \ }achine hine ‘ }achine chine \ }achine \ |

Guest OS 0Ss OS 0Ss NS oS 0Ss oS

Applications ions ons ions ns tions I ions ions

® Bixr] LAZ 2R IIE

" VMware
vSphere

TR R P

& TElRE

/T\%%ijﬁ

54

188 L — 1 gvirt stub, BEFERIGPUIEIKIE
)\ngt stub

® @E1IpvmmuFept, X
%, (RFLE,

® gvirt mediatorgIEvGPUZ YT
® GPU schedulerfa=EE,

X—ErESHIEIREHE Tb

gVirt (ATC14)

Dom0O Qemu VM2
VM1
gVirt Mediator
Native Native
vVGPU || Graphics Graphics
Driver Driver
GPU T
Scheduler \ !
1 I
f‘?\ : Virtupl BIOS
i I |
i 1 Xen |
v . '
X :
PVMMU ! CPU

gVirt Stub I Scheduler
I
EPT <~ - - -

A4
GPU

——> Pass-through -==--> Trap =—> Hypercall

/Y\J%Eﬂdﬁ

ok

///;//////// V\///////V

07777 om\\

(o)

R

IG)

<

.)
n -
-

Ey

A

g %
A Y 2
S| \\sﬁ
- %

)

e DO«
5 22222220008 =,
) %
- <
s [
] Yz
<

O ©
s 2

S 2

pd

%

o

wwo

[I I I wmv
<

Q Q o o o
& 8 8§ 3 § B E

(wAT 01) asuewiopIdd pazijewloN

mgVirt ovTd O Native

OVMGL

120

100
8
6
4
2

duUBWIOMId IAIEN JO %

LM BT AN RN

IVF50%RYERERRK

A

JT

r

7 1T\

56

& LR AERTEERE, HRNERES.

® XTI R UKL,

® PWEEELERAEETGPUREEIHIIFMEK R
& FIAGPUREHIMESIT— M ORI : §RGPUBES.,
® FIAGPUREHMURIESR: GPUERTCPUREIR,

/Y\J%:Sﬂdﬁ b

57

GPUEBWLERRE: APIE& (Thin-Client sosp15) a/

Host OS Guest OS

3) request
transfer GPU application

Backend

4) dispatch TB) response 1) request 11) response
CUDA/OpenCL
o ([CUDA/OpenCL wrapper _
Original GPU
5) execution T 7) response 2) intercept T10) response stack
9) response Frontend API Remoting
transfer | stack |

6) GPU access

Fig. 2. Architecture of the API remoting approach.

/\T\i%“:%ﬁdﬁ b

58

® GPUEBMLERE: API &% (Thin-Client sospl5) a/™

Image

MJT@ b

59

GPUREIMEA E:

ixt=REHUE

i@idwrapper library EIREXGPUIES

®
@ 1813 sockets FHEIEFmIHEGPU
& EXE|miniE{INiE
& [GL5REIdsocket{&(a]
!
CLIENT ! SERVER
Application E Daemon
|
SOFTWARE | CUDA Runtime wrapper library : Sockets APl ||CUDA Driver API
| A
Sockets API :
______________________ - TN SR IR SR
1
HARDWARE Network : GPU
!
1

/Y\J%Eﬂdﬁ

60

GPUREHIMbt AR : iRt

T RMNAFEE, ABBERTAMES, wintlastBa LIS REEEIHE (rCUDA)
HERTEE iR, TERIMCAIUUTRANMESEGECE (gremote)

& IRE=ARIRS=EFIAZ. (microsoft xcloud)

Ce—m— .

EC2 Elastic GPU Elastic
instance network GPU
t2.large interface egl.large

10.0.0.6

VPC
10.0.0.0/16

_ Region)

/\T\%@ﬂdﬁ b

61

GPUREIMEtALRE: 245

& GPURIMEEZEERKAIE (MNESEIZEN)
® fHEEFCPU, GPUZBHERI ML TIPS
® FTHEUBIAZERT, RCGPUKRERHETR
WA 7 EHEIEINAGPU

/Y\J%:Sﬂdﬁ b

62

	幻灯片 1: 虚拟化：云计算的核心支撑技术（2）
	幻灯片 2
	幻灯片 3: 网卡工作原理
	幻灯片 4
	幻灯片 5
	幻灯片 6
	幻灯片 7
	幻灯片 8: 软件模拟的虚拟化网卡
	幻灯片 9
	幻灯片 10
	幻灯片 11
	幻灯片 12
	幻灯片 13
	幻灯片 14
	幻灯片 15
	幻灯片 16
	幻灯片 17
	幻灯片 18
	幻灯片 19
	幻灯片 20
	幻灯片 21
	幻灯片 22: I/O设备半虚拟化
	幻灯片 23
	幻灯片 24
	幻灯片 25
	幻灯片 26
	幻灯片 27
	幻灯片 28
	幻灯片 29
	幻灯片 30
	幻灯片 31
	幻灯片 32
	幻灯片 33
	幻灯片 34
	幻灯片 35
	幻灯片 36
	幻灯片 37
	幻灯片 38
	幻灯片 39
	幻灯片 40
	幻灯片 41
	幻灯片 42: 设备直通
	幻灯片 43
	幻灯片 44
	幻灯片 45
	幻灯片 46
	幻灯片 47
	幻灯片 48
	幻灯片 49
	幻灯片 50
	幻灯片 51: GPU虚拟化
	幻灯片 52
	幻灯片 53
	幻灯片 54
	幻灯片 55
	幻灯片 56
	幻灯片 57
	幻灯片 58
	幻灯片 59
	幻灯片 60
	幻灯片 61
	幻灯片 62
	幻灯片 63

