
虚拟化：云计算的核心支撑技术（2）

马汝辉 副教授 博导

计算机科学与工程系

上海交通大学

目 录

1 网卡工作原理

2 软件模拟的虚拟化网卡

3 I/O设备半虚拟化

设备直通4

GPU虚拟化5

网卡工作原理

01

4

How NICs work

Ethernet Network Interface Cards (NICs) are

used to

attach hosts to Ethernet Local Area Networks

(LANs).

NICs are deployed everywhere - laptops, PCs,

machines in data centers - and many vendors

and models are available - e.g. Intel, Mellanox,

Broadcom, Realtek, Qualcomm.

5

How NICs work

Three ways that I/O devices can interact with the CPU and the memory

6

How NICs work

PIO and MMIO: port-mapped I/O(PIO) and memory-mapped I/O(MMIO) are two most basic method

for CPUs to interact with I/O devices. The BIOS/UEFI associate the registers of the I/O devices with

unique, dedicated addresses.

PIO: the addresses of PIO are called “ports”, they are separated from the memory address space

and have their own dedicated physical bus. Such addresses are typically limited to 16 bits. They

are used via the special OUT and IN x86 instructions, which write/read 1–4 bytes to/from the I/O

devices.

MMIO: the device registers are associated with physical memory addresses,

and they are referred to using regular load and store x86 operations through the memory bus. The

association between device registers and memory addresses is predetermined on startup.

7

How NICs work

DMA: The core only initiates the DMA operation, asking the I/O

device to asynchronously notify it when the operation completes (via an interrupt, the core is then

free to engage in other work.

Devices do DMA operation with bus addresses. In some systems, bus addresses are identical to

CPU physical addresses, but in general they are not. IOMMUs and host bridges can produce

arbitrary mappings between physical and bus addresses.

Interrupts: I/O devices trigger asynchronous event notifications directed at the CPU cores by

issuing interrupts.

软件模拟的虚拟化网卡

02

9

I/O Virtualization

I/O Virtualization is an essential component in the virtualization Framework. (CPU, Memory

Virtualization)

I/O virtualization environments are created by abstracting the upper layer protocols from the

physical connections.

10

I/O Virtualization

Software based I/O Virtualization:

• Rich set of virtualization features

• I/O Sharing, Security, Isolation, Mobility.

• Simplified management

• Encapsulate VM state->VM Suspend/Resume, Live Upgrade and Live migration.

Hardware assisted I/O Virtualization:

• High performance I/O: throughput, latency.

• Forgo certain virtualization benefits.

11

I/O Virtualization

Virtual I/O implementation:

• I/O interposition(I/O emulation and Paravirtualization)

• Direct Device Assignment(Passthrough)

12

How NICs are emulated

Why devices need to be emulated in a virtualized environment ?

A guest operating system does not cease to behave as an operating system merely because it runs

as a guest. It still believes that it exclusively controls all the physical I/O devices, and it discovers,

initializes, and drives these devices exactly as bare metal machine.

Consider the system’s hard drive controller. This device must be safely shared between several

guest OS and the hypervisor.

Compare RAM access with Register access.

13

How NICs are emulated

How devices can be emulated in a virtualized environment ?

I/O interposition

• The hypervisor must prevent guests from accessing real devices while

sustaining the illusion that devices can be accessed; the hypervisor must therefore “fake” I/O

devices for its guests, denoted as virtual I/O devices.

• The hypervisor achieves this goal by trapping all the guest’s I/O-related operations and by

emulating them to achieve the desired effect.

14

How NICs are emulated

MMIO: Guest’s MMIOs are regular loads/stores from/to guest memory pages, so the hypervisor

can arrange for these memory accesses to trap by mapping the pages as reserved/non-present

(both loads and stores trigger exits) or as read-only (only stores trigger exits).

PIO: Guest’s PIOs are privileged instructions, and the hypervisor can configure the guest’s VMCS

to trap upon them.

DMA: Emulating DMAs to/from guest memory is trivial for the hypervisor, because it can read from

and write to this memory as it pleases.

Interrupt: the hypervisor can use the VMCS to inject interrupts

to the guest. Each interrupt causes at least two VM-Exit(direct interrupt delivery and VT-d posted

interrupt).

15

How NICs are emulated

ASPLOS’12 ELI: Bare-Metal Performance for I/O

Virtualization

16

How NICs are emulated

17

18

How NICs are emulated

Frontend: QEMU emulation layer that understands

the device’s semantics and interacts with the driver

at the guest.

Backend: the software used by the frontend to

implement the functionality of the virtual device using

the physical resources of the host system.

TAP: a virtual Ethernet network device, implemented

in the kernel, that can forward Ethernet frames to and

from the process that connects to it.

19

How NICs are emulated

A write of guest OS to the TDT register - or to any other

register - causes the CPU to exit.

return in the KVM module (host kernel-space) that was

executing an ioctl (KVM_RUN) syscall for QEMU.

When the ioctl returns, QEMU figures out that the VM exit

was due to a register access for an e1000 device and

invokes the e1000 frontend.

The e1000 handler for TDT writes collects all the produced

TX descriptors. For each one, translates the guest physical

address of the Ethernet frame into host virtual address,

sends the frame to a network backend, writes back the

descriptor (i.e. DD bit) and increments TDH.

Once all descriptors are consumed, a Tx interrupt is injected

by KVM module.

20

21

How NICs are emulated

The e1000 emulated TX processing is completely synchronous, differently from what happens with

a real e1000 NIC, where the NIC hardware runs in parallel to the CPU running the sending

application and the driver code.

Each notification causes one VM-exit.

Each interrupt causes at least two VM-exits. Interrupt Injection and completion EOI write.

I/O设备半虚拟化

03

23

I/O Emulation

Guest OS believes exclusive control on I/O devices.

Hypervisor traps the I/O related operations and emulates them

Strengths:

• Full virtualization, no modification to the guest OS.

• Software device states are easy to encapsulate->flexibility:

• dynamically decouple/recouple a physical device from/to a VM

• Live upgrading, reconfiguring, live migration.

• I/O consolidation, improving efficiency, reducing cost.

• I/O aggregation: better performance and robustness.

Weaknesses:

• Efficient virtualization was not considered for hardware design.

• Substantial performance overheads.

24

I/O paravirtualization ideas

While I/O emulation implements a correct behavior, it might induce substantial performance

overheads, because efficient emulation was not recognized as a desirable feature when the

physical device was designed.

Virtualization overheads caused by inefficient interfaces of physical devices could, in principle, be

eliminated, if we redesign the devices to have virtualization-friendlier interfaces.

I/O paravirtualization: guests and hosts agree upon a (virtual) device specification to be used for

I/O emulation, with the explicit goal of minimizing overheads.

25

I/O paravirtualization ideas

Is it possible to build a better - simpler and more efficient - producer/consumer system

that matches the same interfaces as the composite e1000 driver + frontend?

26

The VirtIO Standard

The framework of paravirtual I/O devices of KVM/QEMU is called VirtIO, offering a common guest-

host interface and communication mechanism.

27

The VirtIO Standard

The same principles can be applied also to other forms of virtualized I/O (block storage, serial

ports, …), since all forms of I/O can be seen as producer/consumer systems that exchange

messages.

28

The VirtIO Standard

The task of a VirtIO driver is to convert the OS-specific representation of the message (e.g. a skb

object for a Linux network driver) to the VirtIO message format, and the other way around.

The virtio-net frontend performs the same task on the hypervisor side, converting VirtIO messages

from/to formats understandable to the backend.

29

Scatter-Gather list

VirtIO exchanges data using Scatter-Gather (SG) lists.

An SG list is conceptually a list of (physical) address

and length couples and is usually implemented as an

array.

30

Virtqueues

▪ Central to VirtIO is the Virtqueue (VQ) abstraction. A VQ is a queue where SGs are posted

by the guest driver to be consumed by the hypervisor. Output SGs are used to send data to

the hypervisor, while input SGs are used to receive data from the hypervisor.

▪ A device can use one or more queues, and the number of queues may be negotiated.

31

Virtqueues

▪ When a guest driver wants to produce a SG, it calls the add_buf VQ method, also passing a

token. On the other side, the HV pops the SG, consumes it (interacting with a backend), and

pushes it back in the VQ.

▪ The guest polls for used SGs by calling the get_buf VQ method, so that can perform

cleanup operations. The token - which is opaque for the VQ and is not passed to the HV -

can be used by the driver to match produced SGs (requests) against consumed ones

(responses). Tokens allow for out-of-order SG consumption (e.g. useful with block I/O).

32

Virtqueues

33

The VRing implementation

Three data structures used to describe one VirtQueue:

• Descriptor Table

• Avail Ring

• Used Ring

Multi-fragments SG

Out-of-order SG consumption

Optimized cache usage.

34

The VRing implementation

Descriptor Table

• Physical address and length of a buffer.

• Next pointer for chained descriptors.

• Flags(Input or Output).

Write only by Guest.

An SG with N fragments is mapped to N descs.

35

The VRing implementation

Used Ring

• Used by the hypervisor to return consumed SGs to

the guest.

• Each slot contains the head of the consumed desc.

• Used-idx like the head register of e1000 ring but

different. It is stored in memory, not a MMIO

register.

36

The VRing implementation

Avail Ring

• Used by the guest to expose produced SGs.

• Each slot contains a head which is an index in the

desc table-to the first desc of a SG.

• Avail-idx like the tail register of e1000 ring but

different. It is stored in memory, not a MMIO

register.

Decouple counting of available SGs from

notification.

37

Minimizing notifications

▪ When the driver wants the HV to start consuming SGs, it notifies by using a VQ kick

(implemented with a register write). Similarly, when the HV wants to notify the driver about

consumed SGs, it uses a VQ interrupt.

▪ The kick and interrupt operations are part of the VirtIO interface. The driver should produce

as many SGs as possible before kicking (principle E). Similarly, the HV should consume as

many SGs as possible before sending an interrupt. In this way, notification costs are

amortized over many SGs.

38

Minimizing notifications

Key observations:

• Once the HV consumer thread has been woken up, VQ kicks can be disabled to temporarily

switch to polled mode. When all the pending SGs have been consumed, VQ kicks can be

enabled again.

• Once the guest cleanup thread has been woken up, VQ interrupts can be disabled to

temporarily switch to polled mode. When all the consumed SGs have been cleaned up, VQ

interrupts can be enabled again.

This strategy (similar to Linux NAPI) allows both producer and consumer to temporarily switch from

interrupt mode to polled mode. In this way, notifications (kicks and interrupts) may be amortized

over many packets.

39

Minimizing notifications

The blue thread produces requests in parallel

to the green thread consuming them.

The green thread returns consumed requests

in parallel to the yellow thread cleaning them

up.

While the threads run, notifications are

disabled.

This scheme is general and can be applied to

any paravirtualized I/O device.

40

Performance Test

Netperf TCP stream running in a Linux 3.13 VM on top of

Linux/KVM (same version) and QEMU 2.2, equipped with

e1000 or virtio-net NICs, on a Dell PowerEdge R610 host

with a 2.40GHz Xeon E5620 CPU.

41

I/O paravirtualization

▪ Redesign virtual device and its interface.

▪ Guest uses specialized driver with minimal overhead associated with emulation.

▪ Strengths:

▪ Most virtualization benefits.

▪ Much better performance than I/O emulation.

▪ Weaknesses:

▪ Performance gap with bare-metal machines.(Especially large packets)

▪ Modified guest OS make it less portable than full virtualization.

▪ Installation of paravirtual drivers.

▪ Implementation for each type of OS.

设备直通

04

43

Direct Device Assignment

Device emulation and paravirtualization both incur virtualization overheads but provide safe virtual

I/O and the benefits of I/O interposition.

Given a physical device d, the hypervisor may decide to assign the right to access d exclusively to

some specific virtual machine v, such that no other VM, and not even the hypervisor, are allowed

access. This approach, is denoted as direct device assignment.

44

Direct Device Assignment

▪ Problems of Direct Device Assignment

▪ Lack of scalability

➢ Extra physical I/O devices are inherently limited in quantity. The number of virtual machines that a modern

server can support is much larger than the number of physical I/O devices that it can house.

▪ Isolation and security

➢ If v controls a device, then v can program the device to perform DMA operations directed at any physical

memory location. In other words, by assigning d to v, we allow v to (indirectly) access the entire physical

memory, including areas belonging to other VMs or the hypervisor. Therefore, by utilizing naive direct device

assignment, we essentially eliminate isolation between VMs.

45

Single Root I/O Virtualization

The SR-IOV specification from PCI-SIG defines the

extensions to the PCI Express (PCIe) specification

suite that enable multiple virtual machines (VMs) to

share the same PCIe physical hardware resources.

One physical function(PF) ->multiple virtual

function(VF), each with own DMA streams, interrupts.

46

Single Root I/O Virtualization

An SRIOV-capable I/O device can present multiple instances of itself to software. Each instance

can then be assignment to a different VM, to be used directly (and exclusively) by that VM, without

any software intermediary. Traditionally, it is the role of the operating system to multiplex the I/O

devices. Conversely, an SRIOV device knows how to multiplex itself at the hardware level.

47

Single Root I/O Virtualization

48

Single Root I/O Virtualization

49

Summary

Strengths:

• Self-virtualized hardware, no emulation overhead

• High performance: high throughput, low latency

• Mitigate Scalability Problem(Intel 710 series 1 PF supports 64 VF)

Weaknesses:

• Less flexibility:

• Memory optimization disabled.

• Live migration problems:

• Dirty page loss during pre-copy iteration

• Device state migration

50

Summary

Emulation (Full Virtualization)

• Best option for correctness and abstraction

• Heavy performance overhead

Paravirtualization

• Optimize driver and virtual device interaction

• Guest is “aware” of virtualization

Direct Device Assignment

• Best option for performance

• Strong coupling with hardware

GPU虚拟化

05

52

GPU 虚拟化的起源

软件模拟：VMware SVGA 3D software renderer，Citrix GPU accelerator

直通独占：VMware Virtual Dedicated Graphics Acceleration (vDGA)

直通共享：SR-IOV，gvirt

53

软件模拟(废弃)

软件模拟，无法真正继承GPU的优点

指令集更新， xen 驱动无法自适应

能耗高，内存高，CPU无法适应

性能低，3D模拟无法达到应用的QoS

54

直通独占(废弃)

允许一个虚拟机直接独占一个GPU硬件

直接可以享受硬件加速

无法提高硬件利用率

安全隐患

55

直通共享（共享GPU）

设置了一个gvirt stub，将所有的GPU请求送

入 gvirt stub

通过pvmmu和ept，对一些指令和数据进行筛

选，保证安全。

 gvirt mediator管理vGPU之间的切换

 GPU scheduler负责调度。

gVirt (ATC14)

56

直通共享（成就）

57

总结

上述的方法除了直通共享，其余的已经废弃。

对于硬件有依赖性。

现存直通共享技术需要对GPU内存有访问和修改权限

上述GPU虚拟化秉持一个核心原则：扩大GPU能力。

上述GPU虚拟化前提条件：GPU相较于CPU短缺。

58

GPU虚拟化发展：API 转发 (Thin-Client sosp15)

59

GPU虚拟化发展：API 转发 (Thin-Client sosp15)

60

GPU虚拟化发展：远程虚拟化

通过wrapper library 截获相关GPU指令

 通过sockets 将其送往远端GPU

享受到远端硬件加速

 将结果通过socket传回

61

GPU虚拟化发展：远程虚拟化

 扩大应用范围，不再局限于本地机器，远端机器也可以享用硬件加速（rCUDA）

相较于瘦客户端， 远程虚拟化可以零成本提高硬件配置 （gremote）

提高云内的服务器利用率。 （microsoft xcloud）

62

GPU虚拟化发展：总结

GPU虚拟化需要走很长的路（从生态到架构）

相比于CPU, GPU架构和虚拟化处于初级状态

打破英伟达垄断，是GPU发展的目标

欢迎大家了解并真正认识GPU

谢谢！

	幻灯片 1: 虚拟化：云计算的核心支撑技术（2）
	幻灯片 2
	幻灯片 3: 网卡工作原理
	幻灯片 4
	幻灯片 5
	幻灯片 6
	幻灯片 7
	幻灯片 8: 软件模拟的虚拟化网卡
	幻灯片 9
	幻灯片 10
	幻灯片 11
	幻灯片 12
	幻灯片 13
	幻灯片 14
	幻灯片 15
	幻灯片 16
	幻灯片 17
	幻灯片 18
	幻灯片 19
	幻灯片 20
	幻灯片 21
	幻灯片 22: I/O设备半虚拟化
	幻灯片 23
	幻灯片 24
	幻灯片 25
	幻灯片 26
	幻灯片 27
	幻灯片 28
	幻灯片 29
	幻灯片 30
	幻灯片 31
	幻灯片 32
	幻灯片 33
	幻灯片 34
	幻灯片 35
	幻灯片 36
	幻灯片 37
	幻灯片 38
	幻灯片 39
	幻灯片 40
	幻灯片 41
	幻灯片 42: 设备直通
	幻灯片 43
	幻灯片 44
	幻灯片 45
	幻灯片 46
	幻灯片 47
	幻灯片 48
	幻灯片 49
	幻灯片 50
	幻灯片 51: GPU虚拟化
	幻灯片 52
	幻灯片 53
	幻灯片 54
	幻灯片 55
	幻灯片 56
	幻灯片 57
	幻灯片 58
	幻灯片 59
	幻灯片 60
	幻灯片 61
	幻灯片 62
	幻灯片 63

