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Motivation

Huge difference in computing power and model size
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Inefficiency of Memory

@® Model Size @® Hardware Capacity
« Parameter 1e9 * NVIDIA 3070 8G
* Feature Map 2e9 * NVIDIA 3080 10G
» Gradient 3e9 * NVIDIA 3090 24G
* Float32 4B
» Total 24GB

What if there Is a bigger model?
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Single Node vs Distributed
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CPU

@®) Problem Of Synchronization

GPU

network &
parameters
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Parameter server in CPU

Parameter server in GPU 0

Parameter server distributed over all GPUs

el




Problem Of Synchronization

Assume that the gradients are of 160 MB. In this case it takes 30 ms to send the gradients from all
3 remaining GPUs to the fourth one (each transfer takes 10 ms = 160 MB / 16 GB/s). Adding
another 30 ms to transmit the weight vectors back we arrive at a total of 60 ms.

@ If we send all data to the CPU we incur a penalty of 40 ms since each of the four GPUs needs to
send the data to the CPU, yielding a total of 80 ms.

® we are able to split the gradients into 4 parts of 40 MB each. Now we can aggregate each of the
parts on a different GPU simultaneously since the PCle switch offers a full-bandwidth operation
between all links. Instead of 30 ms this takes 7.5 ms, yielding a total of 15 ms for a synchronization
operation.
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Each GPU connects to a host CPU via a
PCle link which operates at best at 16 GB/s.

GPU also has 6 NVLink connections, each
of which is capable of transferring 300
Gbit/s bidirectionally.

® This amounts to around 18 GB/s per link In
short, the aggregate NVLink bandwidth is
significantly higher than the PCle
bandwidth. The question is how to use it
most efficiently.
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Network can be decomposed into one ring
(1-2-3-4-5-6-7-8-1) with double NVLink
bandwidth and into one (1-4-6-3-5-8-2-7-1)
with regular bandwidth. Designing an
efficient synchronization protocol in this case
IS nontrivial.

/Y\J%ﬂﬁ b




Ring Synchronization

@® given a ring of n computing nodes we can
send gradients from the first to the second

<« - x x x x X | x node. There it is added to the local

gradient and sent on to the third node, and

so on. After n—1 steps the aggregate
B = G"”_‘ B = G"”_‘ gradient can be found in the last-visited
node. O(n)

: ® broke the gradients into n chunks and

started synchronizing chunk i starting at

— = — — = — node i. Since each chunk is of size 1/n the
F _‘ F —‘ total time is now (n—1)/n=1. O(1)
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@ A server (or servers) to split data, separate

Global { S It and aggregate the global model.

Server Server

® Many workers with separated data to train
the separated models.

Local {
models :

EEEE EEEE [I11] EEEE ® Connected by high speed networks
 Worker ) | Worker | Worker Worker

t t  t 1

data
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Distributed Methods#4

Algorithm 1 Distributed Subgradient Descent

Task Scheduler:

issue LoadData() to all workers
- for iterationt =0, .. ., T do

issue WORKERITERATE(?) to all workers.
end for

i o

SEHHTINERE

1. o R BIETIE— T worker i &

2. §—PworkerT SHTHIT
WORKERITERATERZE, —#HERTR, =
RARELGFH 4TI SR

Workerr = 1,...,m:
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load a part of training data {y;,, x;, },.~,
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5: function WOl(l'l)(ERlTERATE(.t) (). WorkerBRRIA(Li T
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Asynchronous tasks and dependency

‘execute-after-finished” dependency

U cPUintensive [ Network intenm
iter0 gradient push & pull
iter 1 gradient push & pull

executed asynchronously

iter 0 gradie"t pusn - puu ‘M

iter 1 gradient push & pull

® Any push or pull request can be a task, so
can be a remote function that is executing.
Tasks are generally asynchronous in nature
and programs/applications can continue
executing after issuing the task.

Machine

Machine

Machine

Bulk Synchronous
Execution
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PS vs Bulk Synchronous system

time (hours)

-combuting
waiting

System-A System-B Parameter Server

objective value
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@) Coordinate of Multi-PS

@ @® a single parameter server is a
/ I bottleneck since its bandwidth is finite.
@ @ @ @ ® multiple parameter servers store parts

of the parameters with aggregate

GPU GPU GPU GPU GPU GPU GPU GPU GPU GPU
single parameter server ban dW|dth .

GPU GPU GPU GPU GPU GPU GPU GPU GPU GPU

multiple servers /V\T%?\_SJ—H J m |
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Privacy and Security
Issues In Deep
Learning
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P

The challenges are not only due to transporting high-volume, high-velocity, high-veracity, and
heterogeneous dataacross organisations but also the data protection regulations and restrictions
such as the EU General Data Protection Regulation (GDPR)

What ? LT 7 !

Data Protection regulation that /' More obligations on Data

applies to processing personal data / Controller & provide rights to

of EU/UK residents AP ! data owners to control their data
* *

Which ? S * GDPR ~ Sl Global

* *

Any information relating to EU/UK K 4 K Applies globally to any organization

citizens whether they can be H : ~ processing information on EU/UK

identified directly or indirectly " residents

? e ? ‘/, \\~ ®
Why? & Penalty
To protect personal data from mis- Penalties up to 4% (or €20m whichever
use and to ensure data privacy is higher) for major breaches
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P

prevent insiders at the server from

Insider Attack Privacy-preservation

at coordination server

conducting inference attacks

prevent Byzantine participants from
conducting model poisoning
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Threats and Attacks

Privacy inference attacks

» EXisting work suggested that adversaries can infer different levels of sensitive information from
the updated gradients

® Eavesdropping attacks
 The adversaries located in the communication channel between central server and local

workers can launch eavesdropping attacks. The adversaries can steal or tamper some
meaningful information, such as model weights or gradients, in each communication.

Poisoning attacks
« Poisoning attacks on machine learning models have been widely studied. These attacks occur
In the training phase against FL. On the one hand, adversaries can impair the performance of
the final global model on untargeted tasks. On the other hand, adversaries can inject a
backdoor into the final global model.
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Strength of Federated
Learning
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What Is Federated Learning?

® The term federated learning was introduced in 2016 by McMahan et al.

* “We term our approach Federated Learning, since the learning task is solved by a loose
federation of participating devices (which we refer to as clients) which are coordinated by a
central server.”

@ A broader defination

» Federated learning is a machine learning setting where multiple entities (clients) collaborate in
solving a machine learning problem, under the coordination of a central server or service
provider. Each client’s raw data is stored locally and not exchanged or transferred; instead,
focused updates intended for immediate aggregation are used to achieve the learning objective
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Life Cycle of Federated Learning#1

v
clients T model
{7 .
testing
ﬁ 0
0 N
®
L engineers
- federated # analysts qrest of
. .
. learning model @
deployment

@ Problem identification: The model engineer identifies a problem to be solved with FL.

® Client instrumentation: If needed, the clients (e.g. an app running on mobile phones) are
iInstrumented to store locally (with limits on time and quantity) the necessary training data.
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Life Cycle of Federated Learning#2

v
clients T model
{7 .
testing
ﬁ 0
0 N
®
L engineers
- federated # analysts qrest of
. .
. learning model @
deployment

@ Simulation prototyping (optional): The model engineer may prototype model architectures

and test learning hyperparameters in an FL simulation using a proxy dataset.

Federated model training: Multiple federated training tasks are started to train different

variations of the model, or use different optimization hyperparameters.
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clients T model
{7 .
testing
rﬁ E
0 N
®
L engineers
- federated # analysts qrest of
. .
. learning model E
deployment

@® (Federated) model evaluation: After the tasks have trained sufficiently (typically a few days),
the models are analyzed and good candidates selected. Analysis may include metrics
computed on standard datasets in the datacenter, or federated evaluation wherein the
models are pushed to held-out clients for evaluation on local client data.
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& Classification

Data from A

Samples
Horizontal
Federated Learning

Data from B

————————————————1

Features

® "Horizontal federated learning, or sample-based federated learning, is introduced in the scenarios
that data sets share the same feature space but different in sample.”
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Horizontal data example

Online publisher of
blogs, curated content.

- ~
Subjects {" Person A Person B \‘
I
"": Articles Read Articles Read Articles Read I
o — — HORIZONTAL |
rticles Written rticles Written rticles Written I
: DATA .
Features — ;1 | Following Following Following :
i
' I
| /
““—\1 ’/

@® With horizontal data, rows of data are available with a consistent set of features. This is exactly the
type of data you’'d feed into a supervised machine learning task.
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Data from B

Features

® “Vertical federated learning or feature-based federated learning ... is applicable to the cases that
two data sets share the same sample ID space but differ in feature space.”
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Online publisher of
blogs, curated content.

m—————— —.  Large o —————— - @ fictitious high street book

V4
Subjects —{E Person A Person B
Articles Read Articles Read Articles Read

Articles Written Articles Written Articles Written

retailer Stone\Water’s have some

-y,

of the same customers as online

Features

Following Following Following

blogging curator Large (also totally

fictitious) and capture different
features such as book

N ‘Title’,'Category’, ‘Author’ from

Subjects
StoneWater’s

Title \

Category

each purchase.

Category

Features —

Author Author

VERTICAL

h------------------ﬂ’

PSR sty ¥ 500 N sy

|
i
I
| DATA

DATA
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@ Classification

Federated
Transfer Learning PN
Data from A W
kS
[=9
E E——
A
Data from B Labels
Features

® “Transfer federated learning is applicable to the cases that two data sets share some same sample
ID space and feature space.”
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Storage & Compute

belonging to data owner(s).

External organisations initiate model
build and associated data tasks.

Central Data

D private data

C compute
- m models

F federation

® This Is a newer, emerging type of Federated Learning, and in some ways may be outgrowing the
Federated term, having a more peer-to-peer feel.

® An owner, or in future—owners, of private data can provide access for external organisations to
build models on their data without sharing that data.
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Comparison

TABLE 1: TYPICAL FL SETTINGS AND OF TRADITIONAL DISTRIBUTED LEARNING

DATACENTER DISTRIBUTED | CROSS-SILO FEDERATED CROSS-DEVICE FEDERATED
LEARNING LEARNING LEARNING
Setting Training a model on Training a model The clients are a very
alarge but “flat” on siloed data. large number of mobile
dataset. Clients are Clients are different or loT devices.
compute nodes in organizations [e.g.,
a single cluster or medical or financial)
datacenter. or datacenters
indifferent
geographical regions.
Data Datais centrally Data is generated locally and remains
distribution stored, so it can be decentralized. Each client stores its own data
shuffled and balanced and cannot read the data of other clients. Datais
across clients. Any not independently or identically distributed.

client can read any
part of the dataset.

Orchestration Centrally A central orchestration serveriservice organizes
orchestrated. the training, but never sees raw data.

Distribution Typically 1-1000 Typically 2 - 100 Up to 10" clients.

scale clients. clients.

Client Clients are reliable and almost always Clients are often

properties available to participate in computations. unavailable and can only
Clients may be directly addressed, and can be accessed by random
maintain state across computation rounds. sampling from available

devices. For large
populations a single
client will typically only
participate onceina s m
given computation. MJT




Hyper-Personalized Low Cloud Infra Overheads

Minimum Latencies Privacy Preserving
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Strengths

FL enables devices like mobile phones to collaboratively learn a shared prediction model while
keeping the training data on the device instead of requiring the data to be uploaded and stored
on a central server.

® Moves model training to the edge, namely devices such as smartphones, tablets, 10T, or even
“‘organizations” like hospitals that are required to operate under strict privacy constraints.

® Makes real-time prediction possible, since prediction happens on the device itself.

Since the models reside on the device, the prediction process works even when there is no
Internet connectivity.

® FL reduces the amount of hardware infrastructure required.
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Various technologies for Privacy

Technologies Characteristic

Differential Privacy (local, central, A quantification of how much information could be learned about
shuffled, aggregated, and an individual from the output of an analysis on a dataset that
hybrid models) includes

the user. Algorithms with differential privacy necessarily
incorporate some amount of randomness or noise, which can be
tuned to mask the influence of the user on the output.

Secure Multi-Party Computation Two or more participants collaborate to simulate, though
cryptography,
a fully trusted third party who can:
» Compute a function of inputs provided by all the participants;
» Reveal the computed value to a chosen subset of the
participants,
with no party learning anything further.

sl



Various technologies for Privacy

Technologies Characteristic

Homomorphic Encryption Enables a party to compute functions of data to which they do
not have plain-text access, by allowing mathematical operations to
be performed on ciphertexts without decrypting them. Arbitrarily
complicated functions of the data can be computed this way
(“Fully Homomorphic Encryption™) though at greater computational

cost.
Trusted Execution  Confidentiality: The state of the code’s execution remains
Environments secret, unless the code explicitly publishes a message;
(secure enclaves) * Integrity: The code’s execution cannot be affected, except

by the code explicitly receiving an input;

» Measurement/Attestation: The TEE can prove to a remote
party what code (binary) is executing and what its starting
state was, defining the initial conditions for confidentiality
and integrity.

7 1 NI/ od U T




FedAvg Algorithm
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Key Properties

Non-IID

« The training data on a given client is typically based on the usage of the mobile device by a
particular user, and hence any particular user’s local dataset will not be representative of the
population distribution.

® Unbalanced

« Similarly, some users will make much heavier use of the service or app than others, leading to
varying amounts of local training data.
Massively distributed
* We expect the number of clients participating in an optimization to be much larger than the
average number of examples per client.
® Limited communication

« Mobile devices are frequently offline or on slow or expensive connections.
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min f(w) where f(w) = — 3 fi(w)

d

@ fi(w) =I(x1; yi;w), that is, the loss of the prediction on example (xi; yi) made with model parameters w.

@® We assume there are K clients over which the data is partitioned, with Pk the set of indexes of
data points on client k. Thus, we can re-write the objective

f(w) =Y —Fi(w) where Fy(w) Zfz
k=1

’LE’PA;
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From SGD to FedAvg

Fk( ) Z fz ( ) Algorithm 1 FederatedAveraging. The K clients are
k ’ZE'Pk indexed by k; B is the local minibatch size, E' 1s the number

of local epochs, and 7 1s the learning rate.

Server executes:
gk — VF]{ (wt) initialize wq
foreachroundt =1,2,... do
K m + max(C - K,1)
n. S; + (random set of m clients)
Wi+1 A Wy — 77 Z 7911 for each client & € S; in parallel do
=1 w,, + ClientUpdate (k, w;)

, K ng, k
Wiyl & D g n Wi

\V/k, th — Wy — ngi. ClientUpdi.itE{k,.w}: /I Run on c.‘ﬁcen.f k
B + (split Py, into batches of size B)
for each local epoch 7 from 1 to £ do

for batch b € B do
NL
Wi — Z f+1 w + w — nVEe(w: b)

A 1. return w (o server
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MNIST CNN IID
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Test set accuracy vs. communication
rounds for the MNIST CNN (11D and then
pathological non-1ID) and Shakespeare
LSTM (IID and then by Play&Role) with

C = 0.1 and optimized n.
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Round i Round i+1

~ | ———— . ~ - ——
Selection Configuration Reporting I Selection Configuration Repo...
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|
. Device ' . C
Devices check-in with the FL server, @ On-device training is performed,
O Server rejected ones are told to come back later model update is reported back
E-j Persistent storage Servgr reads model checkpoint from @ Server aggregates updates into
persistent storage the global model as they arrive
X Rejection (“come back later!”) @ Model and conf!guration are sent Server writes global model
é& Device or network failure to selected devices checkpoint into persistent storage
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[ Coordinator J ® Coordinators

lcreates

Master Aggregator .

coordinates

 The top-level actors which enable global
synchronization and advancing rounds

| R [ [ - - —

Cr‘eate/ \;reates in lockstep.
Aggregator | "' | Aggregator
\ / « There are multiple Coordinators, and

each one is responsible for an FL
Selector e Selector

t R

connections from devices

population of devices.

() Persistent (long-lived) actor

——
i 1

i__1 Ephemeral (short-lived) actor
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[ Coordinator J

lcreates

Master Aggregator .

| R [ [ - - —

creatﬁ/ \;reates

coordinates

-

>
Q
Q
=
D
Q
)]
H
o
=
>
Q
Q
=
(D
Q
Q
[
o
=

Selector [ Selector

t R

connections from devices

() Persistent (long-lived) actor

——
i 1

i__1 Ephemeral (short-lived) actor

® Selectors

* Responsible for accepting and forwarding
deviceconnections.

 They periodically receive information from the
Coordinator about how many devices are
needed for each FL population, which they use
to make local decisions about whether or not
to accept each device.
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[ Coordinator J

lcreates

Master Aggregator .

| R [ [ - - —

creatﬁ/ \;reates
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Selector [ Selector

t R

connections from devices

() Persistent (long-lived) actor

—_—
H 1

i Ephemeral (short-lived) actor

LT

® Master Aggregators

« Manage the rounds of each FL task.

* In order to scale with the number of
devices and update size, they make
dynamic decisions to spawn one or more
Aggregators to which work is delegated.
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