
Federated Learning (FL) Lab

目 录 1 FedAvg algorithm

Benchmark algorithms2

Advanced algorithms3

0 Backgrounds

Backgrounds
• Governmental support

• Develop trend00

4

隐私计算及联邦学习

数据最高管理部门——国家数据局成立

4

负责协调推进数据基础制度建设，统筹数据
资源整合共享和开发利用，统筹推进数字中
国、数字经济、数字社会规划和建设等，由
国家发展和改革委员会管理。

国家数据局的成立或将促进以下行业的发展：

• 数据收集（各行业数字化转型）

• 数据储存(国资云，底层算力基础设施)

• 数据处理（数据安全与隐私计算）

• 数据定价（数据资产化）

• 数据流转(数据交易机构、公共数据交易)

5

隐私计算及联邦学习
5

安全多方计算 联邦学习 同态加密 可信执行环境 合成数据 差分隐私 秘密共享

波士顿女性劳动力

欧洲统计系统
欧盟统计局

印度尼西亚旅游部

意大利国家统计研究所

英国国家统计局

三星SDS（韩国）

加拿大统计局

韩国统计局

荷兰统计局

联合国欧洲经济委员会

美国人口普查局

美国教育部

The UN Guide on Privacy Enhancing-Technologies (PETs) for Official Statistics

6

隐私计算及联邦学习

联邦学习相关国自然基金项目获批数呈现出逐年增加的趋势，这表明联邦学习在学
术界和工业界的应用越来越受到重视。联邦学习是多个领域的融合，触及到的研究
方向众多，应用场景非常丰富。

6

金融领域有复旦大学柴洪峰团队获批的重
大研究计划《大数据背景下基于联邦学习
的小微企业信用风险评估研究》

通信领域有深圳市大数据研究院朱光旭团
队获批的青年科学基金项目《面向联邦式
边缘学习的高效通信技术研究》

医疗领域有上海大学武星团队的面上项目
《多中心胶囊内窥镜影像联邦主动学习》

7

隐私计算及联邦学习

涵盖多个领域，主要以边缘计算、物联网
和车辆交互为主

各领域联邦学习研究逐年增长，趋势良好

7

2022联邦学习全球研究域应用趋势报告

8

隐私计算及联邦学习
8

联邦学习性能上以聚合、优化方法和
异构为主

各方法研究量逐年增长

联邦学习安全上以区块链、差分隐私和
多方计算为主

各方法研究量逐年增长

2022联邦学习全球研究域应用趋势报告

9

隐私计算及联邦学习

开源框架

9

Github热度 发布方 系统名称 开源时间 系统特点

8000 OpenMine
d

PySyft 2017.7 • 一个用于安全和私有深度学习的 Python 库
• 基于 PyTorch，使用 Unity Game Engine
• 安全多方计算
• 联合学习、差异隐私

4100 微众银行 FATE 2019.2 • 工业级框架，采用 Python开发，底层计算存储基于
EGGROLL、Spark 等高性能计算引擎

• 提供一站式的联邦模型企业级服务解决方案。提供多插件
支持联邦学习企业和科研应用

• 支持主流的分类、回归、聚类和迁移学习的联邦化算法
• 提供多种安全计算协议支撑上层应用，支持同态加密协议、

秘密共享协议、不经意传输协议和 DH密钥交换算法等
• 提供20多个联邦算法组件

1800 谷歌 TensorFlow
Federated

2019.3 • 可以选择 ML 模型架构
• 模型设计理念以数据为主

10

联邦学习介绍

联邦学习是一种分布式机器学习技术，或机器学习框架。

在保证数据隐私安全及合法合规的基础上，实现共同建模，提升AI模型的效果。

本质上是通过多
个用户设备共同
训练一个代表所
有用户设备的全
局模型

训练过程不需要
用户数据的交换，
更强调隐私性。

FedAvg algorithm
• Background and contributions

• Federated learning review

• Federated settings

• Federated Averaging

• Experiments

01

12

FedAvg algorithm

Background

• Recently, attributed to the collection of massive data from users or organizations, AI
has been thriving for years.

• However, some private data is also collected during data collection, such as the
shopping behaviors, facial images, house locations, etc.

• Data breach is becoming more and more severe, and many governments have
issued data privacy protecting laws.

13

FedAvg algorithm

Background

• AI model training based on distributed computing and edge computing is required.

14

FedAvg algorithm

Background

• Different from traditional settings, data cannot be collected and naturally exists locally.

15

FedAvg algorithm

Contributions

• Consider the problem of training dispersed data from mobile devices as an important
research direction.

• Propose a simple and practical algorithm for Federated Averaging.

• An extensive empirical evaluation of the proposed algorithms shows that they are
robust to non-independently identically distributed (Non-IID) and unbalanced data.

16

FedAvg algorithm

Federated learning review

• Learning tasks are handled by a loose federation of participating devices (clients)
coordinated by a central server.

17

FedAvg algorithm

Federated learning review

• Each client has a local training data set that does not need to be uploaded to the
server and only sends local model parameters for each update.

18

FedAvg algorithm

Federated learning (FL) review: ideal FL

• Training on real-world data from mobile devices has distinct advantages over the
proxy data that is ubiquitous in data centers.

• This data is privacy-sensitive or large (compared to the size of the model) to avoid
recording it to the data center for model training.

• For supervised tasks, labels on data can be naturally inferred from user interactions.

19

FedAvg algorithm

Federated learning (FL) review: privacy

• In the traditional distributed training setting, even if an "anonymous" data set is held,
users' privacy will be threatened through the connection with other data.

• In contrast, the information transmitted in FL is the minimum update (all/part of the
model parameters) needed to improve a particular model, and less information means
a lower risk of privacy disclosure.

• Combining FL with secure multi-party computing and differential privacy.

20

FedAvg algorithm

Federated settings

• Non-IID data: Training data on a given client is usually based on mobile device usage
by a particular user, so any local data set for a particular user does not represent a
group distribution.

• Imbalance: Some users will use the service or application more than others, resulting
in different amounts of local training data.

• Massive clients: We expect the number of clients participating in the FL to be much
larger than the average number of instances per client.

• Limited communication: Mobile devices are often offline or in a slow or expensive
connection.

21

FedAvg algorithm

Objective

K number of clients
P� the distribution of local data
n� the number of local data samples

 �� � = � ��, ��; �

22

FedAvg algorithm

Limited communication

• In data center optimization, communication costs are relatively small while computing
costs dominate, and recent emphasis has been on using GPUs to reduce these costs.
In contrast, in joint optimization, communication costs dominate -- we're typically
limited by upload bandwidth of 1MB/s or less.

• Clients typically volunteer for optimization only when charging, plugging in, and using
a non-billable Wi-Fi connection, and we expect each client to participate in a small
number of update sessions per day.

• Modern smartphones have plenty of local computing power and small datasets
on a single device.

23

FedAvg algorithm

Reduce communication

• Increasing parallelism, that is, using more clients to work independently between
rounds of communication.

• Add computations per client, that is, perform more complex computations (such as
cumulative training) between rounds of communication.

24

FedAvg algorithm

Federated Averaging

K：Client amount

B：Batch size

E：Local training rounds

η：Local learning rate

25

FedAvg algorithm

Federated Averaging

• It is beneficial to initialize local models with the common start point

• Mixed weight = θw + (1 - θ)w′

26

FedAvg algorithm

Experiments

• Image classification: MNIST handwritten digital recognition

• Language modeling: Dataset based on the Complete Works of William Shakespeare

27

FedAvg algorithm

Experiments (MNIST)

• IID: shuffling the data and dividing it into 100 clients, each receiving 600 examples.

• Non-IID: (1) sort the data by number label; (2) divide it into 200 shards of size 300; (3)
assign 2 shards to each of the 100 clients, most clients will have only two number
examples.

28

FedAvg algorithm

Experiments (MNIST)

• 1) A simple multilayer-perceptron with 2-hidden layers with 200 units each using
ReLU activations (199,210 total parameters), which we refer to as the MNIST 2NN.

Hidden neuronsInput neurons Output neuronsHidden layer Hidden layer

29

FedAvg algorithm

Experiments (MNIST)

• 1) A simple multilayer-perceptron with 2-hidden layers with 200 units each using
ReLU activations (199,210 total parameters), which we refer to as the MNIST 2NN.

class FedAvgMLP(nn.Module):
 def __init__(self, in_features=784, num_classes=10, hidden_dim=200):
 super().__init__()
 self.fc1 = nn.Linear(in_features, hidden_dim)
 self.fc2 = nn.Linear(hidden_dim, num_classes)
 self.act = nn.ReLU(inplace=True)

 def forward(self, x):
 if x.ndim == 4:
 x = x.view(x.size(0), -1)
 x = self.act(self.fc1(x))
 x = self.fc2(x)
 return x

30

FedAvg algorithm

Experiments (MNIST)

• 2) A CNN with two 5x5 convolution layers (the first with 32 channels, the second with
64, each followed with 2x2 max pooling), a fully connected layer with 512 units and
ReLU activation, and a final softmax output layer (1,663,370 total parameters).

class FedAvgCNN(nn.Module):
 def __init__(self, in_features=1, num_classes=10, dim=1024):
 super().__init__()
 self.conv1 = nn.Sequential(
 nn.Conv2d(in_features,
 32,
 kernel_size=5,
 padding=0,
 stride=1,
 bias=True),
 nn.ReLU(inplace=True),
 nn.MaxPool2d(kernel_size=(2, 2))
)

31

FedAvg algorithm

Experiments (Key hyperparameters)

• C：Proportion of clients participating in calculation: 1 indicates that all clients
participate in training

• E：Number of training cycles per client between two communications

• B：Mini-batch size of each client. ∞ indicates full-batch

• �� = � ��
�

：The total number of updates in each iteration on client �

32

FedAvg algorithm

Experiments (communication rounds)

C = 0.1 is the best

C：Proportion of clients participating in calculation
E：Number of training cycles per client between two communications
B：Mini-batch size of each client. ∞ indicates full-batch
�� = � ��

�
：The total number of updates in each iteration on client �

33

FedAvg algorithm

Experiments (communication rounds)

C：Proportion of clients participating in calculation
E：Number of training cycles per client between two communications
B：Mini-batch size of each client. ∞ indicates full-batch
�� = � ��

�
：The total number of updates in each iteration on client �

FedSGD: C = 1 and Full-
Batch Optimization

FedAvg: C = 0.1

34

FedAvg algorithm

Experiments (training loss curves)

C：Proportion of clients participating in calculation, C=0.1
E：Number of training cycles per client between two communications
B：Mini-batch size of each client. B=10.
�� = � ��

�
：The total number of updates in each iteration on client �

35

FedAvg algorithm

Experiments (training loss curves)

C：Proportion of clients participating in calculation, C=0.1
E：Number of training cycles per client between two communications
B：Mini-batch size of each client. B=10.
�� = � ��

�
：The total number of updates in each iteration on client �

LSTM

Benchmark algorithms
• MOON

• FedDyn

• KT-pFL

• FedMA

02

MOON

37

38

MOON algorithm

Observation

• The global model trained on a whole dataset can learn a better representation than the local
model trained on a skewed subset.

39

MOON algorithm

Observation

• The global model trained on a whole dataset can learn a better representation than the local
model trained on a skewed subset.

• Propose model-contrastive learning (MOON), which corrects the local updates by maximizing
the agreement of representation learned by the current local model and the representation
learned by the global model.

40

MOON algorithm

Contrastive learning

• The key idea of contrastive learning is to reduce the distance between the representations of
different augmented views of the same image (i.e., positive pairs), and increase the distance
between the representations of augmented views of different images (i.e., negative pairs)

41

MOON algorithm

MOON

• Global representation

• Local representation

• Current representation

•

42

MOON algorithm

MOON

FedDyn

43

44

FedDyn algorithm

Intuition

• Training models on local data that minimize local empirical loss appears to be meaningful, but
yet, doing so is fundamentally inconsistent with minimizing the global empirical loss.

• Dynamically modify the device objective with a penalty term so that, in the limit, when model
parameters converge, they do so to stationary points of the global empirical loss.

45

FedDyn algorithm

FedDyn

46

FedDyn algorithm

Analysis

• The first order condition

• If local device models converge, they converge to the server model, and the convergence
point is a stationary point of the global loss.

KT-pFL

47

48

KT-pFL algorithm

Intuition

• Main idea is to allow each client to maintain a personalized soft prediction at the server that
can be updated by a linear combination of all clients local soft predictions using a knowledge
coefficient matrix.

• Regardless of model structures

49

KT-pFL algorithm

Knowledge Distillation (KD)

• Transfer knowledge from well-learned teacher model to student model

50

KT-pFL algorithm

Knowledge Distillation (KD)

• Classification

51

KT-pFL algorithm

Knowledge Distillation (KD)

• Response-based KD

52

KT-pFL algorithm

KT-pFL

• Objective

53

KT-pFL algorithm

KT-pFL

• Personalized loss function
• Kullback–Leibler (KL) Divergence

• ��� is the knowledge coefficient which is used to estimate the contribution from client m to n.

• � �� , � can be deemed to be a soft prediction of the client n

54

KT-pFL algorithm

KT-pFL

• Knowledge coefficient matrix

55

KT-pFL algorithm

KT-pFL

• Objective

56

KT-pFL algorithm

KT-pFL

• Training
• Update w

• Local Training

• Distillation

• Update c

57

KT-pFL algorithm

KT-pFL

58

KT-pFL algorithm

KT-pFL

• Illustration

FedMA

59

60

FedMA algorithm

Permutation invariance

y

 w1 w2

61

FedMA algorithm

Permutation invariance （fully-connected (FC) layer)

62

FedMA algorithm

Permutation invariance （fully-connected (FC) layer)

63

FedMA algorithm

Permutation invariance （fully-connected (FC) layer)

Aggregation

Client A:

Solution:

Client B:

64

FedMA algorithm

Permutation invariance （FCs)

Simple FCs:

Deep FCs:

65

FedMA algorithm

Permutation invariance （FCs)

66

FedMA algorithm

Permutation invariance （CNN)

CNN :

FC :

67

FedMA algorithm

Permutation invariance （recall)

Aggregation

Client A:

Solution:

Client B:

68

FedMA algorithm

Matched averaging formulation

69

FedMA algorithm

Matched averaging formulation

70

FedMA algorithm

FedMA (https://github.com/IBM/FedMA)

Aggregation

71

FedMA algorithm

FedMA (https://github.com/IBM/FedMA)

72

FedMA algorithm

FedMA (https://github.com/IBM/FedMA)

73

FedMA algorithm

FedMA (https://github.com/IBM/FedMA)

Aggregation

74

FedMA algorithm

FedMA (https://github.com/IBM/FedMA)

Advanced algorithms
• SageFlow03

SageFlow

76

77

Sageflow algorithm

Stragglers: slow devices

• Keep waiting: slow down the overall process

• Drop out: important data missing

• Asynchronous(staleness): + adversaries?

Attackers: malicious attacks launched by adversaries

• untargeted attacks: model poisoning, data
poisoning

• targeted/backdoor attacks: misclassify the
targeted subtasks

• Robust Federated Averaging & Multi-Krum

• Large portion of adversaries

• Straggler: increase attack ratio

78

Sageflow algorithm

Staleness-aware grouping

Entropy-based filtering + Loss-weighted averaging

79

Sageflow algorithm

Staleness-aware grouping

• perform periodic global aggregation(fixed time
deadline)

• allow stragglers to be aggregated in later rounds

• group with same staleness -> group
representative model

• aggregate according to staleness

Staleness group Number of data samples

Staleness function

Sageflow algorithm

Entropy-based filtering

• Public data on server

• Filter out high entropy models (loss)

• For model poisoning

Shannon
entropy

Sageflow algorithm

• Loss-weighted averaging

• Aggregation weight according to local models’
measured qualities

• Measure by loss on public data

• data-poisoned model -> small weight + less impact

• For data poisoning & scaled backdoor

Sageflow algorithm

Time complexity
Public
data

Model
parameters

Clients
number

Sageflow algorithm

Theoretical Analysis

Convergence analysis

• Assumption 1: µ-strongly convex + L-smooth

• Assumption 2: unbiased estimation

Theoretical bound

Convergence speed Error

Sageflow algorithm

Datasets: MNIST, FMNIST, CIFAR10

• 2% as public data

Models: CNN(2conv+2fc), CNN(2conv+1fc), CNN(VGG-11)

• ignore batchnorm

FL setting: 100 clients, two classes for each client, 5 local epochs, batch size of 10

Sageflow algorithm

Only stragglers: 10% participants

Baselines: FedAvg(waiting, ignoring, waiting 50%), FedAsync

Settings: uniform delay of [0,1,2] global rounds

Ignoring lose significant data converges to a suboptimal point

Waiting(all, 50%) requires the largest running time until convergence

Sageflow algorithm

Only adversaries: 20% participants

Baselines: RFA, FedAvg, synchronized Zeno+, Multi-Krum

Attacks: model(-0.1w), data(label-flipping), backdoor(model replacement, pixel-pattern attack)

FedAvg does not work well on all datasets

RFA: complex model led to worse performance

Zeno+: bad on poisoning but good for backdoor

Sageflow: slow down posioning

Sageflow algorithm

Stragglers + adversaries: 20%(model/data), 10%(backdoor) participants

Baselines: asynchronized Zeno+, Multi-Krum

Zeno+: does not perform well(ignore staleness & entropy)

Waiting + RFA: suffer from straggler

Ignoring/Sag + RFA: poor(high attack ratio) eflow/RFA + FedAsync: poor(one-by-one arrivals)

Sageflow algorithm

Sageflow: robust FL scheme handle both stragglers and adversaries

• staleness-aware grouping: stragglers

• entropy-based filtering: model poisoning

• loss-weighted averaging: data poisoning + backdoor

Theoretical convergence analysis

Extensive experimental results

Future issues: Sageflow + secure aggregation

FLChain

89

FL + Blockchain
complete dependency on
the reliability of a central
server for storage and
computation of the global
model update

Any malicious activity
leads to flawed global
model update which is
detrimental for accuracy
of subsequent local model
updates

FL + Blockchain
Initialization

Channel Inquiry

Channel Selection

Device Registration

Local Model Update

Transaction Pool

Global Model Update

Consensus Protocol

Analysis

FL + Blockchain

FAIR

93

Federated Learning

Federated Learning
Problems

• mobile users do not participate in learning due to computation and energy consumption

• model update quality of mobile devices can vary dramatically, inclusively aggregating low-
quality model updates can deteriorate the global model quality

Solution: Federated leArning with qualIty awaReness

• learning quality estimation: leverage historical learning records to estimate the user learning
quality, the exponential forgetting function is utilized for weight assignment;

• quality-aware incentive mechanism: within the recruiting budget, model a reverse auction
problem to encourage the participation of high-quality learning users;

• model aggregation: integrates the model quality into aggregation and filters out non-ideal
model updates, to further optimize the global learning model

FAIR Architecture

FAIR Architecture
Estimating Learning Quality

FAIR Architecture
Quality-Aware Incentive Mechanism

FAIR Architecture
Model Aggregation

Analysis
Theoretical

• Truthful

• Individually rational

• Computational Efficiency

Evaluation
Settings

• Models: MLP, LeNet, MobileNet, VGG-11, EfficientNet-B0, ResNet-18

• Dataset: MNIST, Fashion-MNIST, CIFAR-10, Street View House Numbers

• Baselines: Theoretically optimal mechanism, Knapsack greedy mechanism, Bid price first
mechanism

• Hyperparameters

Evaluation
Different incentive mechanisms

Evaluation
Attack scenarios

Evaluation
Noise levels

Evaluation
Learning budgets

Q&A

