o rs=rsmu

sEREME: Liass/a6l

52i% flziR. 8%
IENRFEEIER
LigZEXF

01

Introduction to Docker

."'."‘E

DDDDD

Overview

Docker is an open platform for developing, shipping, and running
applications, an open source application container engine, which is
based on Go language and complies with apache2.0 protocol.

Docker enables you to separate your applications from your
infrastructure so you can deliver software quickly. With Docker, you
can manage your infrastructure in the same ways you manage
your applications.

By taking advantage of Docker’s methodologies for shipping,
testing, and deploying code quickly, you can significantly reduce
the delay between writing code and running it in production.

/‘\T\%@ﬂdﬁ

Application scenario

Automatic packaging and publishing of applications.
Application isolation.
Automated testing and continuous integration, release.

Deploying and adjusting databases or other background
applications in a service-oriented environment.

Compiling from scratch or extending the existing OpenShift or
Cloud Foundry platform to build your own PAAS environment.

/Y\J%:Sﬂdﬁ

Advantages

(1) Fast, consistent delivery of your applications

Docker streamlines the development lifecycle by allowing
developers to work in standardized environments using local
containers which provide your applications and services.

Containers are great for continuous integration and continuous
delivery (CI/CD) workflows.

(2) Responsive deployment and scaling

Docker’s container-based platform allows for highly portable
workloads. Docker containers can run on a developer’s local laptop,
on physical or virtual machines in a data center, on cloud providers,
or in a mixture of environments.

Docker’s portability and lightweight nature also make it easy to
dynamically manage workloads, scaling up or tearing down
applications and services as business needs dictate, in near real
time.

MJT@

Advantages

(3) Running more workloads on the same hardware

Docker is lightweight and fast. It provides a viable, cost-effective
alternative to hypervisor-based virtual machines, so you can use
more of your compute capacity to achieve your business goals.

Docker is perfect for high density environments and for small and
medium deployments where you need to do more with fewer
resources.

/Y\J%:Sﬂdﬁ

The Docker platform

Docker provides the ability to package and run an application in
a loosely isolated environment called a container. The isolation
and security allows you to run many containers simultaneously
on a given host.

Containers are lightweight and contain everything needed to
run the application, so you do not need to rely on what is
currently installed on the host. You can easily share containers
while you work, and be sure that everyone you share with gets
the same container that works in the same way.

Docker provides tooling and a platform to manage the lifecycle
of your containers. You can develop your application and its
supporting components using containers.The container
becomes the unit for distributing and testing your application.

MJT@

Container vs Virtual Machine

App App

Operating System

Hardware

phyical server

App App
Bin/Library Bin/Library
0S 0S
Virtual Machine Virtual Machine
Hypervisor

Operating System

Hardware

virtual machine

/fV\@ﬁT%SJﬂJFT

Container vs Virtual Machine

App App

App App

Bin/Library Bin/Library —
Bin/Library Bin/Library

0S 0S

Container Container

Virtual Machine Virtual Machine
. Container Runtime
Hypervisor

Operating System

Operating System

Hardware

Hardware

virtual machine

container

/fV\@ﬁT%SJﬂJFT

Container vs Virtual Machine

Characteristics Virtual Machine

starting speed seconds level minutes level

shipping/deployment consistent development, testing -
and production environment

performance close to physical machine large performance loss
Image size KB ~ MB GB
migration/extention cross platform replicable -

/Y\i%i%ﬂﬁ b

Architecture

Docker uses a client-server(C/S)
architecture.

The Docker client talks to the Docker
daemon, which does the heavy lifting of
building, running, and distributing your
Docker containers. The Docker client and
daemon can run on the same system, or
you can connect a Docker client to a
remote Docker daemon.

The Docker client and daemon
communicate using a REST API, over
UNIX sockets or a network interface.
(https://docs.docker.com/develop/sdk/)

CHent}

docker run

docker build --{---:

/
docker pull -~

—_—

DOCKER_HOST)

',d-I Docker daemon

d.s

‘ NGIMX
. /
. /

* —

/

B N @
" -~
‘. ~
.. -~
© ~
N
A\
-
s

s
™

&S

/Y\i%’“:%ﬂdﬁ b

Architecture

(1) The Docker daemon
The Docker daemon (dockerd) listens for
Docker API requests and manages Docker
objects such as images, containers,
networks, and volumes. A daemon can also
communicate with other daemons to
manage Docker services.

(2) The Docker client
The Docker client (docker) is the primary
way that many Docker users interact with
Docker. When you use commands such as
docker run, the client sends these
commands to dockerd, which carries them
out. The docker command uses the Docker
API. The Docker client can communicate
with more than one daemon.

CHent}

docker run

docker build --{---:

/
docker pull -~

—_—

DOCKER_HOST)

Docker daemon

N
[\- .

‘ NGIMX
T~ /
. !/

. —
\.,\ Y
NS

B L @
" -~
‘. ~
.. -~
~
N
A\
-
s

Rl
™

&S

/Y\i%“‘:%ﬂdﬁ b

Architecture

(3) Docker registries

DOCKER_HOST)

A Docker registry stores Docker images. (Glent)

Docker Hub is a public registry that anyone docker build g >
can use, and Docker is configured to look for docker pull -| /
Images on Docker Hub by default. You can dockerran B/
even run your own private registry.

When you use the docker pull or docker run
commands, the required images are pulled
from your configured registry. When you use
the docker push command, your image is

Docker daemon

N
\- .

‘ NGIMX
T~ /
. /

. ~
‘NS

B N @
" -~
‘. ~
.. -~
~
N
A\
-
s

s
™

&S

pushed to your configured registry.

/Y\i%’“:%ﬂdﬁ b

Architecture

(4) Docker objects —— Images
An image is a read-only template with (Gient] DOER TOST (Regitr) t
instructions for creating a Docker container. docker build 1711 Cockerdaemon] @ Sh,
docker pull - l'j '\. @; b N <
Often, an image is based on another image, ockerrn N ’ | —‘é NGX
with some additional customization.You T~ \'/‘Tz@’)

only use those created by others and é‘
published in a registry. To build your own
Image, you create a Dockerfile for defining
the steps needed to create the image and
run it. Each instruction in a Dockerfile
creates a layer in the image. When you
change the Dockerfile and rebuild the image,
only those layers which have changed are
rebuilt.

might create your own images or you might | ,
Sy,
Sy,

/Y\i%“‘:%ﬂdﬁ b

Architecture

(4) Docker objects —— Containers | |
A container is a runnable instance of an (e LU :Reglstw)—*

image. docker build /,’;-I = - \| @
/ ‘ ~ <
i : g
N
\
/ -

Rl
™

N
\
A container is defined by its image as well as docker run —7 N ‘ NGIX
any configuration options you provide to it Pl 7)

iy,

when you create or start it. By default, a "
Sy, é
Sy,

container is relatively well isolated from other
containers and its host machine.

You can create, start, stop, move, or delete a
container using the Docker API or CLI. You
can connect a container to one or more
networks, attach storage to it, or even create
a new image based on its current state.
When a container is removed, any changes
to its state that are not stored in persistent

storage disappear. rasN—<ntifin

02

Use of Docker

Installation

Installation of Docker for Ubuntu
1.Automatic installation using official installation script
>curl -fsSL https://get.docker.com | sudo sh -s

chen@chen-virtual-machine: $ curl —fsSL https://get. docker.com | sudo sh -s

Executing docker install script, commit: 93d2499759296ac1f9¢510605fef85052a2¢32be

+ sh —c apt—get update —-qq >/dev/null

+ sh —c¢ DEBIAN FRONTEND=noninteractive apt—get install -y —qg apt-transport-https ca-certific
ates curl >/dev/null

+ sh —c¢ curl —fsSL “https://download. docker. com/1inux/ubuntu/gpg” | gpg —dearmor —yes —o /u
sr/share/keyrings/docker—archive-keyring. gpg

+ sh —¢ echo “deb [arch=amd64 signed-by=/usr/share/keyrings/docker—archive—keyring. gpg] https
. //download. docker. com/linux/ubuntu focal stable” > /etc/apt/sources. list.d/docker. list

+ sh —c apt—-get update —qq >/dev/null

+ sh —c DEBIAN FRONTEND=noninteractive apt—get install -y —qq ——no—-install-recommends docker
—ce—cli docker—scan—plugin docker—ce >/dev/null

+ version_gte 20. 10

+ [-z |

+ return 0

+ sh —c DEBTAN_FRONTEND=noninteractive apt—-get install -y —qq docker—ce-rootless—-extras >/dev
/null

+ sh —c¢ docker version

Client: Docker Engine — Community

Version: 20. 10. 14

API version: 1.41

Go version: gol. 16. 15

Git commit: a224086

Built: Thu Mar 24 01:48:02 2022

0S/Arch: linux/amd64

Context: default

Experimental: true

Server: Docker Engine — Community
Engine:

Installation

2.hello-world to test whether successfully installed
>sudo docker run hello-world

~hen@chen-virtual-machine: $§ sudo docker run hello-world

lnable to find image 'hello—world:latest’ locally

latest: Pulling from library/hello—world

db29710123e: Pull complete

Digest: sha256:10d7d58d5ebd2a652f4d93fdd86da8f265f5318c6a73ccbh6a9798ff6d2b2e67
Status: Downloaded newer image for hello—world:latest

ello from Docker!
his message shows that your installation appears to be working correctly.

generate this message, Docker took the following steps:
. The Docker client contacted the Docker daemon.

. The Docker daemon pulled the “hello—world” image from the Docker Hub.
(amd64)

. The Docker daemon created a new container from that image which runs the
executable that produces the output vou are currently reading.

. The Docker daemon streamed that output to the Docker client, which sent it
to your terminal.

try something more ambitious, you can run an Ubuntu container with:
docker run —it ubuntu bash

Share images, automate workflows, and more with a free Docker ID:
https://hub. docker. com/

['or more examples and ideas, visit: u .
https://docs. docker. com/get—started/ 7 S T | }

Installation

3.Modify Docker CGroup driver to systemd
>sudo usermod -aG docker SUSER
>sudo mkdir -p /etc/docker
>sudo tee /etc/docker/daemon.json <<-'EOF'
{
"exec-opts": ['native.cgroupdriver=systemd"],
"log-driver": "json-file",
"log-opts": {
"max-size": "100m"
b
"storage-driver": "overlay2",
"registry-mirrors": ["https://docker.mirrors.ustc.edu.cn/"]

}
EOF

/Y\J%Eﬂdﬁ b

Installation

4.Load the configuration and restart the docker service
>sudo systemctl daemon-reload
>sudo systemctl restart docker

chen@chen—virtual-machine: $ sudo usermod —aG docker $USER
chen@chen—-virtual—ma Jlﬁne. $ sudo mkdir —p /etc/docker
chen@chen-virtual-machine: $ sudo tee /etc/docker/daemon. json <<{- EOF’
>

> "exec—opts”: [“native. cgroupdriver=systemd”],

> ”1og dli\el”: ”json—-file”,

> 1og opts : {

> "max-size”: 7100m”

> 1

> ”stoxage driver”: ”overlay2{

> leglstlx mirrors”: [“https://docker.mirrors. uste. edu. cn/”]
S
S

EOF

{

” ” ” . . ”
exec—opts”: [“native. cgroupdriver=systemd”],
” . ” 7" . . ”n”

log-driver”: " json—file",

” ”

log—opts”: {

max—-size : 100m

-IJ
storage- driver : “overlay2’,
leglstlx mirrors”: [“https://docker.mirrors. ustc. edu. cn/”]

Chen@chen—virtual—machine: $ sudo systemctl daemon—reload
chen@chen—virtual-machine: $§ sudo systemctl restart docker

(F =i e
@&
%

Docker client

Directly enter the docker command to view all command options of the docker client
>docker

chen@k8s-master: $ docker
Usage: docker [OPTIONS] COMMAND
A self-sufficient runtime for containers

Options:
—config string Location of client config files (default ”/home/chen/.docker”)
-c¢, ——context string Name of the context to use to connect to the daemon (overrides DOCKER HOST env var and
default context set with “docker context use”)
-D, —debug Enable debug mode
-H, —host list Daemon socket(s) to connect to
-1, —log-level string Set the logging level (“debug”|”info”|”warn”|”error”|”fatal”) (default “info”)

—tls Use TLS; implied by —tlsverify
—tlscacert string Trust certs signed only by this CA (default ”/home/chen/. docker/ca.pem”)
——tlscert string Path to TLS certificate file (default ”/home/chen/. docker/cert. pem”)
—tlskey string Path to TLS key file (default ”/home/chen/. docker/key.pem”)
—tlsverify Use TLS and verify the remote

-v, ——version Print version information and quit

lanagement Commands:
app* Docker App (Docker Inc., v0.9.1-beta3)
builder Manage builds
buildx* Docker Buildx (Docker Inc., v0.8.1-docker)
config Manage Docker configs
container Manage containers
context Manage contexts
image Manage images
manifest Manage Docker image manifests and manifest lists
network Manage networks

¥ NS

<
G

Docker command --help

Through the command docker command --help, you can have a deeper understanding
of the use of the specified docker command
>docker build --help

chen@k8s—master: $§ docker build —help
Usage: docker build [OPTIONS] PATH | URL | -
Build an image from a Dockerfile

Options:
——add-host 1ist Add a custom host—-to—IP mapping (host:ip)
——bhuild-arg list Set build-time variables
——cache—from strings Images to consider as cache sources
——cgroup—parent string Optional parent cgroup for the container
——compress Compress the build context using gzip
-—cpu-period int Limit the CPU CFS (Completely Fair Scheduler) period
——cpu—quota int Limit the CPU CFS (Completely Fair Scheduler) quota
——cpu—shares int CPU shares (relative weight)
——cpuset—cpus string CPUs in which to allow execution (0-3, 0,1)
——cpuset—-mems string MEMs in which to allow execution (0-3, 0, 1)
——disable—-content-trust Skip image verification (default true)
——file string Name of the Dockerfile (Default is ~PATH/Dockerfile’)
——force—rm Always remove intermediate containers
—-—iidfile string Write the image ID to the file
——isolation string Container isolation technology
——label list Set metadata for an image
——memory bytes Memory limit
——memory-—swap bytes Swap limit equal to memory plus swap: -1 to enable unlimited swap
——network string Set the networking mode for the RUN instructions during build (default “default”)
——no—cache Do not use cache when building the image
——pull Always attempt to pull a newer version of the image
——quiet Suppress the build output and print image ID on success
——Tm Remove intermediate containers after a successful build (default true)

Use command docker images to list images on the local host
>docker images

naster: $§ docker image
IM%E ID

1~hangzhou. aliyuncs. c 2 : : -
cn-— han@ hou. aliyuncs. ¢ o contai iners/kube-proxy 71.23. 5 3cHa g Hl()IlT
. cn—hangzhou. aliyuncs. com/goog nbp (()IlTl()llt—‘l —-manager 71.23. 5 : 4 month
cn—hangzhou. aliyuncs. ¢ /kube—-scheduler 71.23. 5 :) 4 month
lirrored-flannelcni—flannel 0. 17. 4 month
/mirrored-flannelcni—-flannel-cni-plugin /1. 0. 4Q 5 month
: 6h 6 month

7. ecn—hangzhou. aliyuncs. com/google_containers/etcd 3dab : mnmhq 8¢
(.'11—}'181"10'2hou. aliyuncs. com/; :;.._ containers, cdns /1.8.6 azcas) months agc
- e ‘ 10 months

The same repository can have multiple tags, representing different versions of the
repository. For example, there are 15.10, 14.04 and other different versions in the
Ubuntu repository. We use repository:tag to define different images.

13 -.)MB
112MB
1‘? oMB

3. bMB
.)9 8MB
8. IMB
J;ObMB

\JiMbJTUﬁ

< M0 ToNG

438, =i
y
‘:”lpﬂ X

Docker search

You can search the images from docker hub website. (https://hub.docker.com/)
You can also use the docker search command to search for images.
>docker search ubuntu

chen@k8s—master: $ docker search ubuntu

ubuntu-upstart

neurodebian

open—1iberty

ubuntu/nginx
ubuntu—debootstrap
ubuntu/apache?2

ubuntu/mysql
kasmweb/ubuntu-bionic—-desktop
ubuntu/prometheus
ubuntu/squid

ubuntu/bind9

ubuntu/postgres

ubuntu/redis

ubuntu/grafana
ubuntu/prometheus-alertmanager
ubuntu/kafka

ubuntu/memcached
ubuntu/telegraf
ubuntu/zookeeper
ubuntu/cortex
ubuntu/cassandra
bitnami/ubuntu-base-buildpack
ubuntu/loki

DESCRIPTION

Ubuntu is a Debian—based Linux operating sys--
WebSphere Liberty multi-architecture images ---
DEPRECATED, as is Upstart (find other proces-
NeuroDebian provides neuroscience research s---
Open Liberty multi-architecture images based--
Nginx, a high—performance reverse proxy & we-

DEPRECATED: use “ubuntu” instead

Apache, a secure & extensible open—-source HT:--
MySQL open source fast, stable, multi-thread---
Ubuntu productivity desktop for Kasm Workspa--
Prometheus is a systems and service monitori-
Squid is a caching proxy for the Web. Long—t---
BIND 9 is a very flexible, full-featured DNS---
PostgreSQL is an open source object-relation---
Redis, an open source key-value store. Long—---
Grafana, a feature rich metrics dashboard & ---
Alertmanager handles client alerts from Prome--
Apache Kafka, a distributed event streaming ---
Memcached, in-memory keyvalue store for smal--
Telegraf collects, processes, aggregates & w-
ZooKeeper maintains configuration informatio---
Cortex provides storage for Prometheus. Long--
Cassandra, an open source NoSQL distributed ---

Ubuntu base compilation image

Grafana Loki, a log aggregation system like ---

STARS
14599
286
112
92
53
22

46
36
34
29
27
25

2

OFFICIAL
[OK]
[OK]
[OK]
[OK]
[OK]

AUTOMATED

[OK]

(35 =i ¢\
A
%, l4m¢. i/

Docker pull

iy X

To use the image of the official version of ubuntu, use the command docker pull to
download the image.
>docker pull ubuntu

chen@k8s—master: $ docker pull ubuntu

Using default tag: latest

latest: Pulling from library/ubuntu

7Thlabab2e44d: Pull complete

Digest: sha256:626ffeb8f6e7566e00254h638eb7e0f3b11d4da9675088f4781a50ae288f3322
Status: Downloaded newer image for ubuntu:latest

docker. io/library/ubuntu:latest

chen@k8s—master: $§ docker images
REPOSITORY TAG IMAGE 1D CREATED SIZE
latest fObc290b4act days ago 1. 02GB
3.9.13 9ac24a438a7b weeks ago 915MB
ry. cn—hangzhou. aliyuncs. com/google containers/kube—apiserver vl1.23.h 3fcldb62d65H87 months ago 135MB
ry. cn—hangzhou. aliyuncs. com/google containers/kube-proxy v1.23.5 3c¢b3fa8541f9 months ago 112MB
ry. cn—hangzhou. aliyuncs. com/google containers/kube—controller-manager v1.23.5 bOc9ebeddbbl months ago 125MB
y. cn—hangzhou. aliyuncs. com/google containers/kube-scheduler v1.23.5 884d49d6d8c9 months ago b3. 5MB

months ago 8. 1MB
months ago 406MB
months ago 293MB
months ago 72. 8MB
months ago 46. 8MB
0 months ago 683kB
7 1 NT 1 LOJ -

rancher/mirrored-flannelcni—-flannel-cni-plugin v1.0.1 ac40ceb625740
minio/minio latest e31e0721a96b
registry. cn—hangzhou. aliyuncs. com/google containers/eted 3.5.1-0 2Hf8c7f3dabl
ubuntu latest babacccedd29
registry. cn—hangzhou. aliyuncs. com/google containers/coredns v1.8.6 adcad4l631lcc?
registry. cn—hangzhou. aliyuncs. com/google containers/pause 3.6 6270bb605e12

7
3
4
4
4
. 4
rancher/mirrored-flannelcni—flannel v0.17.0 9247abf08677 4 months ago 59. 8MB
5
6
8
9
9
1

AP =i P
4mn /

Docker rmi

: o

To delete an image, use the docker rmi command.
>docker rmi ubuntu
>docker rmi babacc

chen@k8s—master: $ docker images
REPOSITORY TAG
latest
3.9.13
v1.23.5
vl.23.9
v1.23.5
vl1.23.5
v0. 17.0
v1.0.1
latest
3.5.1-0
latest
v1.8.6
3.6

aliyuncs. com/google containers/kube—apiserver
aliyuncs. com/google containers/kube-proxy
y. cn—hangzhou. aliyuncs. com/google containers/kube—controller—manager
ry. cn—hangzhou. aliyuncs. com/google containers/kube—scheduler
rancher/mirrored-flannelcni-flannel
rancher/mirrored-flannelcni—-flannel-cni—-plugin

y. cn—hangzhou.
y. cn—hangzhou.

minio/minio

registry. cn—hangzhou. aliyuncs. com/google containers/etcd
ubuntu

registry. cn—hangzhou. aliyuncs. com/google containers/coredns
registry. cn—hangzhou. aliyuncs. com/google containers/pause

chen@k8s—master: $§ docker rmi ubuntu
Intagged: ubuntu:latest

IMAGE ID

fObc290b4act
9ac24a438a7h
3fc1d62d6587
3c¢H3fa8b41f9
b0c9eb5eddbbl
884d49d6d8c9
9247abf08677
ac40ce625740
e31e0721a96b
25f8c7f3dabl
babacccedd29
adca41631cc?
6270bb605e12

Intagged: ubuntu@sha256:626ffeb8f6e7566e00254b638eb7e0f3b11d4da9675088f4781a50ae288f3322

sha256:babacccedd2923aeedclaccb6al23780b14ed4b8abtfadel4el252a23b846df9b6c1
sha256:9f54eef412758095¢c8079ac465d494a2872e02e90bf1fb5f12a1641c0d1bb78b

Deleted:
Deleted:

CREATED

7
3
4
4
4
4
4
5
6
8
9
9
1

days ago
weeks ago
months ago
months ago
months ago
months ago
months ago
months ago
months ago
months ago
months ago
months ago
0 months ago

SIZE
1. 02GB
915MB
135MB
112MB
125MB
53. bMB
H9. 8MB
8. IMB
406MB
AYRIUIE
72. 8MB
46. SMB
683kB

Docker run

Docker allows you to run an application in the container.

Use the docker run command to build a container based on ubuntu image and
output “Hello world”.

>docker run ubuntu /bin/echo “Hello world”

chen@k8s—master: $ docker run ubuntu /bin/ "Hello world”

Hello world

What happened?

1.Docker Client passes the docker run command to the Docker Engine.

2.Docker Engine creates a new container with Ubuntu image.

3.Execute command bin/echo "Hello world" in the container, and then output the results.
4.The operation ends and the container stops.

Ara=rsrul

Docker run -It

Use two parameters -i -t to let docker run the interactive container.
>docker run -it ubuntu /bin/bash

-t . specify a terminal in the new container

aIIow Interactive operation
- $ dU(xPl run —1t ubuntu /bin/bash

Run the commands cat /proc/version in the container to view the version

iInformation of the current system.

root@d1b685e48d74:/# cat /proc/version

Linux version 5. 13.0-52-generic (buildd@lcy02-amd64-067) (gcc (Ubuntu 9. 4. 0—1ubun

Tul 20.04.1) 9.4.0, GNU 1d (GNU Binutils for Ubuntu) 2.34) #59 20.04.1-Ubuntu SMP
Thu Jun 16 21:21:28 UTC 2022

Run the commands Is in the container to view the list of files in the current directory.

@d1b685e48d74:/# 1s

lib 1ib32 1ib64 1ibx32

VA RN o SJTUﬁ B

alMﬂJWESErﬂnaatEuf: $

Docker run -d

Use the -d parameter to create a container that runs in the background as a process.
>docker run -d --name=ubuntu-test ubuntu /bin/sh -c "while true; do echo hello world;

sleep 1; done"

-d : run in the background
--name : set the name of container

"while true; do echo hello wo

fo4bd4 : container ID

Arsrul

To confirm that the container is running, you can check it through command docker ps
>docker ps

aster: $ docker ps
IMAGE COMMANE CREATED STATUS PORTS NAMES

ubuntu ”/bin/sh —c¢ ’while t--” 3 agc Up 2 Is ubuntu-test

« CONTAINER ID: container ID.

 IMAGE: image used.

« COMMAND: the command that runs when the container is started.

« CREATED: the creation time of the container.

« STATUS: container status.

« PORTS: port information of the container and the connection type used (tcp\udp).
« NAMES: automatically assigned container name.

/‘T\J%ﬂﬁ

Docker logs

Use the docker logs command in the host to view the standard output in the container.
>docker logs ubuntu-test
>docker logs f64bd4

hen@k8s—master: $§ docker logs ubuntu—test
b world
b world
o world
b world
b world
b world
b world
b world
b world
b world
b world
b world
i
i
i
i

O worlc
O worlc
O worlc
O Wworlc

W ARN bJTUﬁ h.

When the -d parameter is used, the container will enter the background after starting. At
this time, you can enter the container through the following command:
>docker attach ubuntu-test

>docker attach f21d01

chen@k8s—master: $§ docker run —itd ——name=ubuntu-test ubuntu /bin/bash
) 462dad951e8156a43217442t009b62a45760f62e340ef2bad74109
ch master: $ docker attach f21d01

root@21d01533a46:/# exit
exit

>docker exec -it ubuntu-test /bin/bash stopped
>docker exec -it f21d01 /bin/bash

chen@k8s—master: § docker exec —it £21d01 /bin/bash
root@f21d01533a46:/# exit

exit

>docker exec ubuntu-test echo “Hello world”
>docker exec f21d01 “Hello world”

chen@k8s—master: $ docker exec f21d01 echo “Hello world”

Hello world

/”\‘*if”:“*f’g%;%ﬂﬁ

Docker stop / restart / rm

To stop a container, use command docker stop.
>docker stop ubuntu-test

>docker stop f64bd4

chen@k8s—master: $§ docker stop ubuntu-test

ubuntu-test

To restart a container, use command docker restart.
>docker restart ubuntu-test

>docker restart f64bd4

chen@k8s—master: § docker restart ubuntu-test

ubuntu—test

To remove a container, use command docker rm.
>docker rm ubuntu-test

>docker rm f64bd4

chen@k8s—master: $ docker rm ubuntu—test

ubuntu—test

To remove all the stopped container, use following command
>docker container prune

/‘T\J%ﬂﬁ

Docker container connection

Network applications can be run in the container. To allow external access to these

applications, you can specify the port mapping through the -P or -p parameter.
>docker run -d -P training/webapp python app.py

>docker run -d -p 5000:5000 training/webapp python app.py
>docker run -d -p 127.0.0.1:5001:5000 training/webapp python app.py
>docker run -d -p 127.0.0.1:5000:5000/udp training/webapp python app.py

-P : randomly map the network port used inside the container to the host
-p : map the network port used inside the container to the specified host port

hHM'l\'_MI ster: $ docker ps
_C IMAGE COMMAND CREATED
PORTS NAMES
18 trainin happ “python app. py”~ 3 seconds ag
seconds 5) o, 127.0.0. 1:5000->5000/udp strange montalcini
e91e42¢29eab trainin . “python app. py” 7 minutes ag
C Up 7 minutes 1 .O.l 5001->5000/tcp upbeat_colden
clbef439a2c1 training/webapp "python app. py” 7 minutes ag
Up 7 minutes 0 . 0:5000->5000/tcp, :::5000->5000/tcp romantic wescoff
hd9624d2624 training/webapp "python app. py”~ 29 minutes a
Up 29 minutes 0.0.0.0:49154->5000/tcp, :::49154->5000/tcp loving beaver

he docker port command allows us to quickly view the mapping of ports.
>docker port e91e42 5000

. $ docker port e91e4?2 5000 7 N\TFTSJTU W

(F =i e
%

Docker commit

When the image we downloaded from the docker image repository cannot meet our
needs, we can change the image in the following two ways:
1.Update the image from the container that has been created and commit the image

>docker run -it ubuntu /bin/bash chen@k8s-master: § docker run —it ubuntu /bin/bash
root@h7e7197bhaab4:/# apt-get update
>apt—get Update :1 http://security. ubuntu. com/ubuntu focal-security InRelease [114 kB]
> -t :2 http://archive. ubuntu. com/ubuntu focal InRelease [265 kB]
exi 3 http://security. ubuntu. com/ubuntu focal-security/universe amd64 Packages [883 kB]

>dOCker Commit _m:"haS Update" 4 http://archive. ubuntu. com/ubuntu focal-updates InRelease [114 kB]

http://archive. ubuntu. com/ubuntu focal-backports TnRelease [108 kB]
_a:"Chen" b7e719 Chen/ubuntu:vz :6 http://archive. ubuntu. com/ubuntu focal/multiverse amd64 Packages [177 kB]
:7 http://archive. ubuntu. com/ubuntu focal/main amd64 Packages [1275 kB]
http://security. ubuntu. com/ubuntu focal-security/restricted amd64 Packages [1398 kB]
. . - :9 http://archive. ubuntu. com/ubuntu focal/universe amd64 Packages [11.3 MB]
-m : commit info 210 http://security. ubuntu. com/ubuntu focal-security/main amd64 Packages [2027 kB]
-a: EiL“j]()r .. http://security. ubuntu. com/ubuntu focal-security/multiverse amd64 Packages [27.5 kB]
. 112 http://archive. ubuntu. com/ubuntu focal/restricted amd64 Packages [3%.4 kB]]

. i o http://archive. ubuntu. com/ubuntu focal-updates/main amd64 Packages [2475 kB
b7e719 . container ID] :14 http://archive. ubuntu. com/ubuntu focal-updates/multiverse amd64 Packages [30.2 kB]
chen/ubuntu:v? : target Image name 215 http://archive. ubuntu. com/ubuntu focal-updates/universe amd64 Packages [1161 kB]

:16 http://archive. ubuntu. com/ubuntu focal-updates/restricted amd64 Packages [1511 kB]
http://archive. ubuntu. com/ubuntu focal-backports/universe amd64 Packages [27.1 kB]
: http://archive. ubuntu. com/ubuntu focal-backports/main amd64 Packages [54.2 kB]
Fetched 23.0 MB in 8s (2944 kB/s)
Reading package lists... Done
root@7e7197baabd: /# exit
exit
chen@k8s—master: $ docker commit —-m="has update” —a="chen” b7e719 chen/ubuntu:v2
sha256:97falbc151f1b82812d2c8al8a2a820ab6f3bff8242bbbef4436bfe266adl7beb
chen@k8s—master: $ docker images
REPOSITORY TAG IMAGH
chen/ubuntu v2 97fall

Dockerfile

When the image we downloaded from the docker image repository cannot meet our
needs, we can change the image in the following two ways:

2.Use the dockerfile to create a new image

Dockerfile is a text file used to build images. The text contains commands and
Instructions required for building images.

Every time the dockerfile instruction is executed, a new layer will be created on the
docker.

In an empty directory, create a new file named Dockerfile, and add the following
contents to the file:

FROM nginx
RUN echo LE—AZIKiM’]LE’Jngmx%ﬁ{% > Jusr/share/nginx/html/index.html

- § mktll Dockerfile
- $ cd Dockerfile

$ vi Dockerfile

nginx
echo " IXE&— /A HEFnginxEi1% > /usr/share/nginx/html/index. html

7/ T‘\%JTﬁ

Docker build

Execute the command docker build under the directory of dockerfile.
>docker build -t nginx:v3 ..

(F =i e
@&
%

-t : reporitory:tag
. . context path of the execution

chen@k8s—master: $ docker build -t nginx:v3 .
Sending build context to Docker daemon 2.048kB
Step 1/2 : FROM nginx
latest: Pulling from library/nginx
latest: Pulling from library/nginx
461246efela7: Pull complete
a96aaf9a9ec3: Pull complete
650d8b758441: Pull complete
h138da793ac8: Pull complete
bb1705539683: Pull complete
b9ed43dcc388: Pull complete
Digest: sha256:db345982a2f2a4257¢6£699a499feb1d79451a1305e8022f16456ddc3ad6b94c
Status: Downloaded newer image for nginx:latest
——> 41b0e86104ba
Step 2/2 : RUN echo X2 PAMIMEKnginx5E1%’ > /usr/share/nginx/html/index. html
———> Running in 0368d3495856
Removing intermediate container 0368d3495856
———> acaz2bbf226a3
Successfully built aca2bbf226a3
Successfully tagged nginx:v3
chen@k8s—-master: $ docker images

TAG IMAGE 1D CREATED —
v3 acaZbbf226a3 About a minute ago — wﬁ-thT_L,[w

Dockerfile instructions

FROM

Customized images are based on FROM images. Nginx here is the basic image required for
customization.

FROM <image>

RUN

Execute the following command-line commands.

RUN <command-line command>

<command-line command > is equivalent to the shell command operated on the terminal.

RUN ['<executable>", "<param1>", "<param2>"]

For example: RUN ["./test.php", "deVv", "offline"] is equivalent to RUN ./test.php dev offline

WORKDIR

Specify the working directory. The working directory specified with workdir will exist in every
layer of the image.(the working directory specified by WORKDIR must be created in advance)
WORKDIR <working directory path>

/Y\i%i%ﬂﬁ b

Dockerfile instructions

COPY

Copy files or directories from the context directory to the specified path in the container.
COPY [--chown=<user>.<group>] <source pathl>... <destination path>

COPY [--chown=<user>:<group>] ['<source pathl>",... "<destination path>"]

CMD

Similar to the RUN instruction, used to run programs.

CMD <command-line command>

CMD ["<executable>",">param1>","<param?2>",...]

CMD ["<param1>","<param2>",...]

Provide default parameters for the program specified by the ENTRYPOINT instruction.

Diff:

1.run time: CMD docker run; RUN docker build.

2.The program specified by CMD instruction can be overwritten by the program specified in
docker run command.

3.1f there are multiple CMD instructions in dockerfile, only the last one works.

/Y\i%’“:%ﬂdﬁ b

Dockerfile instructions

ENTRYPOINT

Similar to CMD instruction, but it will not be overwritten by the instruction specified by the
command line parameters of docker run, and these command line parameters will be sent to
the program specified by the ENTRYPOINT instruction as parameters.

If there are multiple ENTRYPOINT instructions in dockerfile, only the last one works.
ENTRYPOINT ['<executeable>","<paraml1>","<param2>",...]

Assume that the nginx:test image has been built through dockerfile:
FROM nginx

ENTRYPOINT ['nginx", "-c"]

CMD ["/etc/nginx/nginx.conf"]

>docker run nginx:test
nginx -c /etc/nginx/nginx.conf

>docker run nginx:test -c /etc/nginx/new.conf
nginx -c /etc/nginx/new.conf

/Y\i%’“:%ﬂdﬁ b

03

Introduction to Kubernetes

."'."‘E

Overview

What is Kubernetes?

Kubernetes is a portable, extensible, open source platform for managing containerized workloads
and services, that facilitates both declarative configuration and automation. Kubernetes provides
some generally applicable features common to PaaS offerings, such as deployment, scaling, load
balancing, and lets users integrate their logging, monitoring, and alerting solutions. But Kubernetes
operates at the container level rather than at the hardware level.

Why is Kubernetes?

Containers are a good way to bundle and run your applications. In a production environment, you
need to manage the containers that run the applications and ensure that there is no downtime. For
example, if a container goes down, another container needs to start.

Kubernetes provides you with a framework to run distributed systems resiliently. It takes care of
scaling and failover for your application, provides deployment patterns, and more.

sl

Overview

Kubernetes provide:

« Service discovery and load balancing
« Storage orchestration

« Automated rollouts and rollbacks

« Automatic bin packing

« Self-healing

« Secret and configuration management

MJT@

Kubernetes cluster

A Kubernetes cluster consists of a set of worker machines, called nodes, that run
containerized applications. Every cluster has at least one worker node.

* The worker node(s) host the Pods that are the components of the application workload.
« The control plane manages the worker nodes and the Pods in the cluster.

Cloud
"' provider
API

5
o)

g - -
=
[=}
o
Z
o

|
|
|
| 96
= o
’ I kubeles kubele; kubeles
hed |
L&) L %)
k Control Plane ,ll k-pro: k-pro k-pro:

In production environments, the control plane usually runs across multiple computers and a
cluster usually runs multiple nodes, providing fault-tolerance and high availability. 7\ <=—-q 7 ﬂ

The control plane's components make global =

3
decisions about the cluster (for example, ' Cloud
or exam ; &
| |
|
|

|
|
|

scheduling), as well as detecting and |
| .
| 1

tartin a new pod when a deployment's | f(\ e

. g up WP w POy i :Ii
|
|
I
|
|
|

Node Node Node

kubele kubele kubele
[W
o0 o0
L - (&
lc-pro; k-pro: k-pro:

responding to cluster events (for example,
replicas field is unsatisfied)

1.kube-apiserver

The API server is a component of the
Kubernetes control plane that exposes the i Control Plane
Kubernetes API. The API server is the front end

for the Kubernetes control plane.

2.etcd

Consistent and highly-available key value store
used as Kubernetes' backing store for all
cluster data.

el

3.kube-scheduler

Control plane component that watches for newly
created Pods with no assigned node, and selects
a node for them to run on.

4. kube-controller-manager

Control plane component that runs controller
processes.

Node controller

Job controller

Endpoints controller

Service Account & Token controllers

API

\
' r\ l Cloud
.&:8: I ¥ provider
= A c-c-m |

[

I

I

I

I s |
| r\ I
I ‘::I:‘ Node Node Node
|

I

I

I

I

I

/ |
I |
|
| —) -
sched | 2
CLO L LE

lc-pro; k-pi k-pro:

/Y\i%i%ﬂﬁ b

5.cloud-controller-manager

A Kubernetes control plane component that
embeds cloud-specific control logic. The cloud
controller manager lets you link your cluster into
your cloud provider's API, and separates out the
components that interact with that cloud platform
from components that only interact with your
cluster.

* Node controller

* Route controller

« Service controller

API

\
’ r\ l Cloud
.&:8: I ¥ provider
= : c-c-m |

[

I

I

|

| s |
| r\ I
I ‘::I:‘ Node Node Node
i

I

I

I

I

I

T

I

|))

I
L0 LO L

lc-pro; k-pro: k-pro:

/Y\i%“‘:%ﬂdﬁ b

Node Components

The node components run on every node, —_————
maintaining running pods and providing the
Kubernetes runtime environment.

)
'
I "' provider
| API
|
|
1.kubelet |

|
|
|
|
I
|

An agent that runs on each node in the cluster. It i /‘:ni Node Node Node
|
|
|
I
|
|
|

makes sure that containers are running in a Pod.
-0 -G
2.Kube-proxy

|
|
|
|
|
etc I
kube-proxy is a network proxy that runs on each | oo | — —
~

node in your cluster, implementing partofthe
Kubernetes Service concept.

3.Container runtime

The container runtime is the software that is responsible for running containers.
Kubernetes supports container runtimes such as docker, containerd, CRI-O, and
any other implementation of the Kubernetes CRI (Container Runtime Interface)

sl

Kubernetes Objects

Kubernetes objects are persistent entities in the Kubernetes system. Kubernetes uses
these entities to represent the state of your cluster.

Specifically, they can describe:

1.What containerized applications are running (and on which nodes)

2.The resources available to those applications

3.The policies around how those applications behave, such as restart policies,

upgrades, and fault-tolerance

A Kubernetes object is a "record of intent"--once you create the object, the
Kubernetes system will constantly work to ensure that object exists. By creating an
object, you're effectively telling the Kubernetes system what you want your cluster's
workload to look like; this is your cluster's desired state.

sl

Object Spec and Status

Almost every Kubernetes object includes two nested object fields that govern the object's
configuration: the object spec and the object status.

For objects that have a spec, you have to set this when you create the object, providing a
description of the characteristics you want the resource to have: its desired state.

The status describes the current state of the object, supplied and updated by the Kubernetes
system and its components. The Kubernetes control plane continually and actively manages every
object's actual state to match the desired state you supplied.

When you create an object in Kubernetes, you must provide the object spec that describes its
desired state, as well as some basic information about the object (such as a name). When you use
the Kubernetes API to create the object (either directly or via kubectl), that API request must
Include that information as JSON In the request body. Most often, you provide the information to
kubectl in a .yaml file. kubectl converts the information to JSON when making the API request.

sl

yaml file

Here's an example .yaml file that shows the required fields and object spec for a Kubernetes
Deployment: (In Kubernetes, a Deployment is an object that can represent an application
running on your cluster.) application/deployment.yaml [[]

apiVersion: apps/vil

Required Fields: ;Z::;afzf’l"yment

« apiVersion - which version of the name: nginx-deployment
Kubernetes API you're using to R
create this object matchLabels:

’ klnd) What klnd Of ObJeCt you replizz;:nii;xteus deployment to run 2 pods matching the template
want to create template:

 metadata - wata that helps e
uniquely identify the object, app: nginx
including a name string, UID, and RS
optional namespace ~ name: nginx

* spec - what state you desire for :::5; TR oo
the object - containerPort: 80

7 N M O U

Pods are the smallest deployable units of computing that you can create and manage in
Kubernetes.

A Pod is a group of one or more containers, with shared storage and network resources, and a
specification for how to run the containers. A Pod's contents are always co-located and co-
scheduled, and run in a shared context. A Pod models an application-specific "logical host": it
contains one or more application containers which are relatively tightly coupled.

The shared context of a Pod is a set of Linux namespaces, cgroups, and potentially other facets
of isolation - the same things that isolate a Docker container. Within a Pod's context, the
individual applications may have further sub-isolations applied.

el

The following is an example of a Pod which consists of a container running the image
nginx:1.14.2:

pods/simple-pod.yaml |_|:|

apiVersion: vl
kind: Pod
metadata:
name: nginx
spec:
containers:
- name: nginx
image: nginx:1.14.2
ports:
- containerPort: 80

Pods in a Kubernetes cluster are used in two main ways:
« Pods that run a single container.
* Pods that run multiple containers that need to work together.

If you want to scale your application horizontally (to provide more overall resources by running
more instances), you should use multiple Pods, one for each instance. In Kubernetes, this is

typically referred to as replication.

/Y\i%’“:%ﬂdﬁ

Workload Resources

 Deployments:represent an application running on your cluster.

* ReplicaSet:to maintain a stable set of replica Pods running at any given time.
« StatefulSet:to manage stateful applications.

« DaemonSet:to ensures that all (or some) Nodes run a copy of a Pod.

« Jobs:creates one or more Pods and will continue to retry execution of the Pods until a
specified number of them successfully terminate.

/Y\i%’“:%ﬂdﬁ b

04

Use of Kubernetes

."'."‘E

Installation

1.Add and trust apt certificate

>curl https://mirrors.aliyun.com/kubernetes/apt/doc/apt-key.gpg | sudo apt-
key add -

Add source address

>sudo add-apt-repository "deb https://mirrors.aliyun.com/kubernetes/apt/
kubernetes-xenial main”

chen@chen—-virtual-machine: $ curl https://mirrors. aliyun. com/kubernetes/apt/doc/apt—key. gpg | sudo apt—ke
y add -
[sudo] password for chen: % Total % Received % Xferd Average Speed Time Time Time Current

Dload Upload Total Spent Left Speed
100 2537 100 2537 0 16159 0 —:—:— —:—:— —:—:— 16159

chen@chen-virtual-machine: $ sudo add-apt-repository “deb https://mirrors. aliyun. com/kubernetes/apt/ kube
-netes—xenial main”
https://mirrors. aliyun. com/kubernetes/apt kubernetes—xenial InRelease [9, 383 B]
https://mirrors. uste. edu. cn/docker—-ce/linux/ubuntu focal InRelease
https://download. docker. com/linux/ubuntu focal InRelease
4 https://mirrors. aliyun. com/kubernetes/apt kubernetes—xenial/main amd64 Packages
:5 http://cn. archive. ubuntu. com/ubuntu focal InRelease
6 http://security. ubuntu. com/ubuntu focal-security InRelease [114 kB]
:4 https://mirrors. aliyun. com/kubernetes/apt kubernetes—xenial/main amd64 Packages [54.7 KkB] Py
:7 http://cn. archive. ubuntu. com/ubuntu focal-updates InRelease [114 kB] 2 ‘fiS—FL/{ ﬂ

2.Update and install
>sudo apt update && sudo apt mstaII —y kubelet kubeadm kubectl
T ; _

ubeadm kubectl

JllIlTll f()(f'—
1]l InRelease
_htulttl focal— <\p(11121t\ InReleas
. /ubuntu t(n_a]_ Ilﬂtplealsp
.archive. nhnutu.tom; o]l "0C s
. archive. ubuntu. com/ubuntu focal-bac kpmt% InRelease
lists... Done

Done
aded. Run apt list ——upgradable to see them.
/binary—amd64/Packages) is configured multiple times in

3. Add completlon
>source <(kubectl completion bash)
>source <(kubeadm completion bash)

chen@chen-virtual-machine: $§ source <(kubectl completion ba:
chen@chen-virtual-machine: § source <(kubeadm completion bas

chen@chen—-virtual-machine: $

/etec,

apt/sources.

MN\F=7

s

bJTUﬁ

Build k8s cluster

1.Modify host configuration

Execute the following two commands on Master and Worker respectively
to edit the corresponding file

>sudo vim /etc/hostname

>sudo vim /etc/hosts

master

> cat /etc/hosts
192.168.124.129 k8s-master
192.168.124.131 k8s-worker
> cat /etc/hostname ~hen@c hwu— _1 tual —11 ine: $ sudo vim /etc/hostname
k8s-master e = 5 fac e $ sudo vim , /etc/hosts .

worker en@che tual-machine: $ chen@chen-virtual-machine: $
> cat /etC/hOStS l““' C h“ll_ rirtual—mea 1e: $§ cat /ete/hostname
192.168.124.129 k8s-master h+—‘ll' Ichen—-virtual-machine: $ cat /etc/hosts
192.168.124.131 k8s-worker IEEREIGREEIREPAYEN ¢ 1ot EA =g

> cat /etc/hostname 192. 168. 159. 130 k8s—worker

k8s-worker

Build k8s cluster

2.Edit the /fetc/fstabfile to prohibit the exchange of partitions

>vim /etc/fstab

/swapfile none swap sw 0 O
Perform this operation on the Master and Worker respectively, and restart

the machine.

chen@chen—-virtual machine: § sudo vim /etc/fstab

3.Execute the following commands on the Master
>sudo kubeadm init --apiserver-advertise-address <Master_IP>\

--pod-network-cidr=10.244.0.0/16 \
--image-repository registry.cn-hangzhou.aliyuncs.com/google containers

<Master |P> IS the |p address of the Master

Arsrul

(35 =i ¢\
A
%, l4m¢. i/

Build k8s cluster

iy X

4.The Master initialization is successful.
The last part of the output information, corresponding to the command of
Worker nodes to join the cluster,needs to be saved.

‘our Kubernetes control-plane has initialized successfully!

o start using your cluster, you need to run the following as a regular user:

mkdir —p $HOME/. kube
sudo cp -1 /etc/kubernetes/admin. conf $HOME/. kube/config
sudo chown $(id —u):$(id —g) $HOME/. kube/config

Alternatively, if you are the root user, you can run:

export KUBECONFIG=/etc/kubernetes/admin. conf

‘ou should now deploy a pod network to the cluster.
un “kubectl apply —-f [podnetwork].yaml” with one of the options listed at:
https://kubernetes. io/docs/concepts/cluster-administration/addons/

hen you can join any number of worker nodes by running the following on each as root:

kubeadm join 192. 168. 159. 129:6443 ——token jb7jwz.bec6hbH80wlp9q9wa \
——discovery—token—ca—cert—hash sha256:869f7ch8c60c2aalb3ebl1c93a97bb64adac739b6bc19c¢354636460eb87211e0a

5.Follow the prompts in the output to execute the following commands:
>sudo mkdir -p $HOME/ kube

>sudo cp -i /etc/kubernetes/admin.conf $HOME/ .kube/config

>sudo chown $(id -u):$(id -g) $SHOME/.kube/config

: § mkdir —p SHOME/. kube

: $ sudo cp -1 /etc/kubernetes/admin. conf $HOME/. kube/config
rd for chen:

+ $ sudo chown $(id —u):$(id —g) $HOME/. kube/config

Conflgure the environment, then the Master can execute the kubect/command

6. Try to execute the following command:
>kubectl get node

chen@k8s—master: § kubectl get node
AME STATUS ROLES AGE VERSION

k8s—master NotReady control-plane, master 83m vl. 23.5
. I :

The status shows NotReady because the network has not been configured

/ ""\j"%‘ﬁﬂﬁ

W, el

Build k8s cluster

7.Execute the following command to install the flannel network plug-in:

>kubectl apply -f
https://raw.githubusercontent.com/coreos/flannel/master/Documentation/kube-flannel.yml

chen@k8s—master: $§ kubectl apply —f https://raw. githubusercontent. com/coreos/flannel/master/Documentation/
kube—flannel. yml

Varning: policy/vlbetal PodSecurityPolicy is deprecated in vl. 21+, unavailable in vl. 25+
hodsecuritypolicy. policy/psp. flannel. unprivileged created

clusterrole. rbac. authorization. k8s. io/flannel created

clusterrolebinding. rbac. authorization. k8s. io/flannel created

serviceaccount/flannel created

configmap/kube—flannel—cfg created

n g

i
TONG

8.Execute the previously saved command on the Worker to join the cluster

>kubeadm join 192.168.159.129:6443 --token jb7jwz.bec6h580w1p9g9wa \
--discovery-token-ca-cert-hash

sha256:869f7cb8c60c2aa153eb11c93a97b64adac739b6bc19¢c354636460eb87211e0a

[kubelet-start] Waiting for the kubelet to perform the TLS Bootstrap...
[kubelet—check] Initial timeout of 40s passed.

This node has joined the cluster:

* Certificate signing request was sent to apiserver and a response was received. -

* The Kubelet was informed of the new secure connection details. N _TLJPF“W
ey)

Run ’kubectl get nodes’ on the control-plane to see this node join the cluster.

@) Build k8s cluster

9.Check the nodes on the Master

>kubectl get nodes

chen@k8s—master: § kubectl get nodes

NAME STATUS ROLES AGE VERSION
k8s—master| [Ready control-plane, master 112m v1.23.5
k8s—worker| |Ready {none> 2mos vl.23.5

The Worker node has joined the cluster, and the node status has changed to Ready

10.Check the correctness of pod
>kubect| get pods -A

aster: § kubectl get pods —-A
NAME ADY STATUS RESTARTS
coredns—65ch4cc984-hx1ps / Running 2 (10m ago)
1 coredns—6hch4cc984- Luwpc Running 2 (10m ago)
cube etcd-k8s—-master Running O
hnh tem kube—apiserver—k8s Running 1
hnh rem kube—controller—m: Running 4 (4m34s ago)
cube tem kube—flannel—-ds—6zfgt Running O
hnh tem kube—flannel—-ds—r72cm Running O
hnh kube—proxy (]hzx Running O
be b
cube I

I\11 ne fem kube—proxy—fg
kube—scheduler—k8s—master

Running O 3m27s J}i
"Minge 2 (Am = 900 Am N
Running 3 (bmlls ago) ZS T

kel el el pd pd

Create a Deployment

The following is an example of a Deployment.
It creates a ReplicaSet to bring up three nginx Pods:

controllers/nginx-deployment.yaml |_D

apiVersion: apps/vl
kind: Deployment
metadata:
name: nginx-deployment
labels:
app: nginx
spec:
replicas: 3
selector:
matchLabels:
app: nginx
template:
metadata:

labels:
app: nginx

spec:

containers:

- name: nginx
image: nginx:1.14.2
ports:

- containerPort: 80

/Y\J%Eﬂdﬁ

Create a Deployment

Before starting, make sure that the kubernetes cluster of is up and running.

>kubectl get nodes

n@k8s—master: § kubectl get nodes
\%HE ST{TLS ROLES AGE VERSION
k8s—master Ready control-plane, master 3d21h vl1.23.5
k8s—worker Ready <{none> 3d19h vl.23.5

apps/vl
Deployment

nginx—deployment

Edit nginx_deployment.yaml file
>Vim nglnx deployment yaml
on nas : § cd nginx

$ 1s

nginx

$ vim nginx deployment. yaml

Create a deployment by running the following command: G

>kubectl apply -f nginx_deployment.yami

chen@k8s—master: $ kubectl apply —f nginx deployment. yaml

nginx
fgitig: 1. 14.2

deployment. apps/nginx—deployment created

>kubectl apply -f https://k8s.io/examples/controllers/nginx-
deployment.yaml

VA RN o SJTUﬁ

Create a Deployment

Check whether the deployment has been created
>kubectl get deployment

chen@k8s-master: $ kubectl get deployment

NAME READY UP-TO-DATE AVAILABLE AGE

nginx—deployment 0/2 2 0 4s

 NAME:name of the deployment in the cluster

« READY:the number of "copies" available for the application. The
displayed mode is "ready number / expected number"

« UP-TO-DATE:the number of copies that have been updated in order to
reach the desired state

« AVAILABLE: the number of copies of the application available to the user

« AGE: the time the application was running

To see the Deployment rollout status
>kubedctl rollout status deployment/nginx-deployment

chen@k8s—master: $ kubectl rollout status deployment/nginx—deployment
Vaiting for deployment "nginx—deployment™ rollout to finish: 0 of 2 updated replicas are available...

/ VN\T=TSJT

"
’-mmno .-

Create a Deployment

Get details of the Deployment
>kubectl describe deployment nginx-deployment

chen@k8s—master: $ kubectl describe deployment nginx—-deployment
Name : nginx—deployment
Namespace: default
CreationTimestamp: Fri, 22 Apr 2022 09:51:27 +0800
Labels: <none>
Annotations: deployment. kubernetes. io/revision: 1
Selector: app=nginx
Replicas: 2 desired | 2 updated | 2 total 2 available | 0 unavailable
StrategyType: RollingUpdate
MinReadySeconds: 0
RollingUpdateStrategy: 25% max unavailable, 25% max surge
Pod Template:
Labels: app=nginx
Containers:
nginx:
Image: nginx:l. 14.2
Port: 80/TCP
Host Port: 0/TCP
Environment: <none>
Mounts: <{none>
Volumes: <{none>
Conditions:
Type Status Reason

Available True MinimumReplicasAvailable

Progressing True NewReplicaSetAvailable
OldReplicaSets: <none>
NewReplicaSet: nginx—deployment-9456bbbf9 (2/2 replicas created)
Events:

Type Reason Age From

Normal ScalingReplicaSet 17s deployment-controller Scaled up replica set nginx—deployment—-9456bbbf9 to 2

To see the ReplicaSet (rs) created by the Deployment
>kubectl get S.

E " “"DESIRED CURRENT READY AGE

‘) 23

1ginx—deployment-9456bbbf9 2 2 0

 NAME: the names of the ReplicaSets in the namespace
« DESIRED: the desired number of replicas of the application,
which you define when you create the Deployment. This is

the desired state
« CURRENT: how many replicas are currently running
« READY: how many replicas of the application are available

to your users
« AGE: the amount of time that the application has been

running

To check the Pods in the Deployment
>kubectl get pod - app=nginx

8s—master: $ kubectl get pod -1 app=nginx
\ %\IE READY ST %TL S RESTARTS

nginx—deployment—-9456bbbf9-2zrxr 1/1 Running 0
nginx—deployment—-9456bbbf9—nbmbk 1/1 Running O

/“T‘\J%“BJTUJTW b

Create a Deployment

Get details of the Pod
>kubectl describe pod <Pod-Name>

chen@k8s—master: $ kubectl describe pod nginx—deployment-9456bbbf9-2zrxr
Name. nginx—deployment—-9456bbbf9-2zrxr
Namespace: default
Priority: 0
Node: k8s-worker/192. 168. 159. 130
Start Time: Fri, 22 Apr 2022 09:51:27 +0800
Labels: app=nginx
pod-template—hash=9456bbbf9
Annotations: <none>
Status: Running
10. 244. 1. 36

10. 244. 1. 36
] By: ReplicaSet/nginx—deployment-9456bbbf9
Containers:
nginx:
Container ID: docker://f459¢66912274db95908c1lac8ch7ebb904ab292575£38a12a9da951e593099bce
Image: nginx:1. 14. 2
Image ID: docker—pullable://nginx@sha256:f7988fb6c02e0ce69257d9bd9cf37ae20a60f1df7563c3a2ababe24160306b8d
Port: 80/TCP
Host Port: 0/TCP
State: Running
Started: Fri, 22 Apr 2022 09:51:33 +0800
Ready: True
Restart Count: O
Environment: <{none>
Mounts:
/var/run/secrets/kubernetes. io/serviceaccount from kube—api—-access—qmrd5 (ro)

Y

(¥ =i)
L7
?”” 2 ,

Create a Deployment

Get details of the Pod
>kubectl describe pod <Pod-Name>

onditions:
Type Status
Initialized True
Ready True
ContainersReady True
PodScheduled True
/olumes:
kube—api—access—qgmrd5:
Type: Projected (a volume that contains injected data from multiple sources)
TokenExpirationSeconds: 3607
ConfigMapName: kube-root—ca. crt
ConfigMapOptional: <nil>
DownwardAPI: true
QoS Class: BestEffort
\ode—Selectors: <none
olerations: node. kubernetes. io/not-ready:NoExecute op=Exists for 300s
node. kubernetes. io/unreachable:NoExecute op=Exists for 300s

Type Reason Ag From

Normal Scheduled 66s default—scheduler Successfully assigned default/nginx—deployment—9456bbbf9-2zrxr to k8s—wor
-

Normal Pulled kubelet Container image “nginx:1.14.2” already present on machine

Normal Created kubelet Created container nginx

Normal Started kubelet Started container nginx

Update a Deployment

Update the nginx Pods to use the nginx:1.16.1 image instead of the nginx:1.14.2 image
>kubectl set image deployment/nginx-deployment nginx=nginx:1.16.1

~hen@k8s—master: b kubect]l set image deployment/nginx—deployment nginx=nginx:1.16.1
eployment. apps/nginx—deployment image updated

Alternatively, modify nginx_deployment.yaml file and reconfigure apps/v1

Deployment
chen@kss—master: $ kubectl apply —f nginx deployment. yaml

deplo\ment apps/nginx—deployment configured nginx—deployment

chen@k8s—-master: ' t]l get pod —1 app=nginx nginx
(AME READY STATUS RESTARTS
nginx—deployment—ff6655784—-tph2x 1/1 Running O

1ginx—deployment—ff6655784-vc jfk 1/1 Running O

Containers: nginx
nginx:)
Container ID: docker://3ada746d70ee10882f0c60d2d0675f9f055e92d3191eeb8af29
Image: nginx:1.16.1 nginx
Image ID: docker—-pullable://nginx@sha256:d20aa6dlcaeb6fd17¢d458f4807e(nginx:1. 16. 1
Port: 80/TCP
Host Port: 0/TCP
State: Running
Started: Fri, 22 Apr 2022 09:53:26 +0800
Ready: True
Restart Count: O

Update a Deployment

Scale the Deployment to 4 Pods (replicas=4)
>kubectl scale deployment/nginx-deployment --replicas=4

Ik8s—master: $ kubectl scale deployment/nginx—deployment ——replicas=4

deployment. apps/nginx—deployment scaled

Alternatively, modify nginx_deployment.yaml file and reconfigure apps/v1

Deployment

$ kubectl apply —f nginx deployment. yaml

deplo\ment apps ‘nginx—deployment configured nginx-deployment

nginx
get pod —1 app=nginx

READY STATUS RESTARTS
1/1 Running
| Running

/,,

nginx-— deploxment ffbb))/b4 \1Qs 1/1
nginx—deployment—ff6655784— tphZ\ 1/1 Running
1/1

nginx

/,.

nginx—deployment—ff6655784-vc jfk Running

nginx
nginx:1. 16. 1

VA RN o SJTUﬁ

Delete a Deployment

Delete the deployment
>kubectl delete deployment nginx-deployment

$ kubect]l delete deployment nginx—deployment

deployment. apps “nginx—-deployment” deleted

el

	幻灯片 1: 轻量级虚拟化：以容器为例
	幻灯片 2
	幻灯片 3
	幻灯片 4
	幻灯片 5
	幻灯片 6
	幻灯片 7
	幻灯片 8
	幻灯片 9
	幻灯片 10
	幻灯片 11
	幻灯片 12
	幻灯片 13
	幻灯片 14
	幻灯片 15
	幻灯片 16
	幻灯片 17
	幻灯片 18
	幻灯片 19
	幻灯片 20
	幻灯片 21
	幻灯片 22
	幻灯片 23
	幻灯片 24
	幻灯片 25
	幻灯片 26
	幻灯片 27
	幻灯片 28
	幻灯片 29
	幻灯片 30
	幻灯片 31
	幻灯片 32
	幻灯片 33
	幻灯片 34
	幻灯片 35
	幻灯片 36
	幻灯片 37
	幻灯片 38
	幻灯片 39
	幻灯片 40
	幻灯片 41
	幻灯片 42
	幻灯片 43
	幻灯片 44
	幻灯片 45
	幻灯片 46
	幻灯片 47
	幻灯片 48
	幻灯片 49
	幻灯片 50
	幻灯片 51
	幻灯片 52
	幻灯片 53
	幻灯片 54
	幻灯片 55
	幻灯片 56
	幻灯片 57
	幻灯片 58
	幻灯片 59
	幻灯片 60
	幻灯片 61
	幻灯片 62
	幻灯片 63
	幻灯片 64
	幻灯片 65
	幻灯片 66
	幻灯片 67
	幻灯片 68
	幻灯片 69
	幻灯片 70
	幻灯片 71
	幻灯片 72
	幻灯片 73
	幻灯片 74
	幻灯片 75

