
轻量级虚拟化：以容器为例

马汝辉副教授、博导

计算机科学与工程系

上海交通大学

目 录

Introduction to Docker1

2

3

4

Use of Docker

Introduction to Kubernetes

Use of Kubernetes

01

Introduction to Docker

Overview

Docker is an open platform for developing, shipping, and running

applications, an open source application container engine, which is

based on Go language and complies with apache2.0 protocol.

Docker enables you to separate your applications from your

infrastructure so you can deliver software quickly. With Docker, you

can manage your infrastructure in the same ways you manage

your applications.

By taking advantage of Docker’s methodologies for shipping,

testing, and deploying code quickly, you can significantly reduce

the delay between writing code and running it in production.

Application scenario

• Automatic packaging and publishing of applications.

• Application isolation.

• Automated testing and continuous integration, release.

• Deploying and adjusting databases or other background

applications in a service-oriented environment.

• Compiling from scratch or extending the existing OpenShift or

Cloud Foundry platform to build your own PAAS environment.

Advantages

(1) Fast, consistent delivery of your applications

Docker streamlines the development lifecycle by allowing

developers to work in standardized environments using local

containers which provide your applications and services.

Containers are great for continuous integration and continuous

delivery (CI/CD) workflows.

(2) Responsive deployment and scaling

Docker’s container-based platform allows for highly portable

workloads. Docker containers can run on a developer’s local laptop,

on physical or virtual machines in a data center, on cloud providers,

or in a mixture of environments.

Docker’s portability and lightweight nature also make it easy to

dynamically manage workloads, scaling up or tearing down

applications and services as business needs dictate, in near real

time.

Advantages

(3) Running more workloads on the same hardware

Docker is lightweight and fast. It provides a viable, cost-effective

alternative to hypervisor-based virtual machines, so you can use

more of your compute capacity to achieve your business goals.

Docker is perfect for high density environments and for small and

medium deployments where you need to do more with fewer

resources.

The Docker platform

• Docker provides the ability to package and run an application in

a loosely isolated environment called a container. The isolation

and security allows you to run many containers simultaneously

on a given host.

• Containers are lightweight and contain everything needed to

run the application, so you do not need to rely on what is

currently installed on the host. You can easily share containers

while you work, and be sure that everyone you share with gets

the same container that works in the same way.

• Docker provides tooling and a platform to manage the lifecycle

of your containers. You can develop your application and its

supporting components using containers.The container

becomes the unit for distributing and testing your application.

Container vs Virtual Machine

phyical server

virtual machine

Container vs Virtual Machine

virtual machine container

Container vs Virtual Machine

Characteristics Docker Virtual Machine

starting speed seconds level minutes level

shipping/deployment consistent development, testing

and production environment

-

performance close to physical machine large performance loss

image size KB ~ MB GB

migration/extention cross platform replicable -

Architecture

Docker uses a client-server(C/S)

architecture.

The Docker client talks to the Docker

daemon, which does the heavy lifting of

building, running, and distributing your

Docker containers. The Docker client and

daemon can run on the same system, or

you can connect a Docker client to a

remote Docker daemon.

The Docker client and daemon

communicate using a REST API, over

UNIX sockets or a network interface.

(https://docs.docker.com/develop/sdk/)

Architecture

（1）The Docker daemon

The Docker daemon (dockerd) listens for

Docker API requests and manages Docker

objects such as images, containers,

networks, and volumes. A daemon can also

communicate with other daemons to

manage Docker services.

（2）The Docker client

The Docker client (docker) is the primary

way that many Docker users interact with

Docker. When you use commands such as

docker run, the client sends these

commands to dockerd, which carries them

out. The docker command uses the Docker

API. The Docker client can communicate

with more than one daemon.

Architecture

（3）Docker registries

A Docker registry stores Docker images.

Docker Hub is a public registry that anyone

can use, and Docker is configured to look for

images on Docker Hub by default. You can

even run your own private registry.

When you use the docker pull or docker run

commands, the required images are pulled

from your configured registry. When you use

the docker push command, your image is

pushed to your configured registry.

Architecture

（4）Docker objects —— Images

An image is a read-only template with

instructions for creating a Docker container.

Often, an image is based on another image,

with some additional customization.You

might create your own images or you might

only use those created by others and

published in a registry. To build your own

image, you create a Dockerfile for defining

the steps needed to create the image and

run it. Each instruction in a Dockerfile

creates a layer in the image. When you

change the Dockerfile and rebuild the image,

only those layers which have changed are

rebuilt.

Architecture

（4）Docker objects —— Containers

A container is a runnable instance of an

image.

A container is defined by its image as well as

any configuration options you provide to it

when you create or start it. By default, a

container is relatively well isolated from other

containers and its host machine.

You can create, start, stop, move, or delete a

container using the Docker API or CLI. You

can connect a container to one or more

networks, attach storage to it, or even create

a new image based on its current state.

When a container is removed, any changes

to its state that are not stored in persistent

storage disappear.

02

Use of Docker

Installation

Installation of Docker for Ubuntu

1.Automatic installation using official installation script

>curl -fsSL https://get.docker.com | sudo sh -s

Installation

2.hello-world to test whether successfully installed

>sudo docker run hello-world

Installation

3.Modify Docker CGroup driver to systemd

>sudo usermod -aG docker $USER

>sudo mkdir -p /etc/docker

>sudo tee /etc/docker/daemon.json <<-'EOF'

{

"exec-opts": ["native.cgroupdriver=systemd"],

"log-driver": "json-file",

"log-opts": {

"max-size": "100m"

},

"storage-driver": "overlay2",

"registry-mirrors": ["https://docker.mirrors.ustc.edu.cn/"]

}

EOF

Installation

4.Load the configuration and restart the docker service

 >sudo systemctl daemon-reload

 >sudo systemctl restart docker

Docker client

Directly enter the docker command to view all command options of the docker client

>docker

Docker command --help

Through the command docker command --help, you can have a deeper understanding

of the use of the specified docker command

>docker build --help

Docker images

Use command docker images to list images on the local host

>docker images

The same repository can have multiple tags, representing different versions of the

repository. For example, there are 15.10, 14.04 and other different versions in the

Ubuntu repository. We use repository:tag to define different images.

Docker search

You can search the images from docker hub website. (https://hub.docker.com/)

You can also use the docker search command to search for images.

>docker search ubuntu

Docker pull

To use the image of the official version of ubuntu, use the command docker pull to

download the image.

>docker pull ubuntu

Docker rmi

To delete an image, use the docker rmi command.

>docker rmi ubuntu

>docker rmi ba6acc

Docker run

Docker allows you to run an application in the container.

Use the docker run command to build a container based on ubuntu image and

output “Hello world”.

>docker run ubuntu /bin/echo “Hello world”

What happened?

1.Docker Client passes the docker run command to the Docker Engine.

2.Docker Engine creates a new container with Ubuntu image.

3.Execute command bin/echo "Hello world" in the container, and then output the results.

4.The operation ends and the container stops.

Docker run -it

Use two parameters -i -t to let docker run the interactive container.

>docker run -it ubuntu /bin/bash

-t : specify a terminal in the new container

-i : allow interactive operation

Run the commands cat /proc/version in the container to view the version

information of the current system.

Run the exit command or use ctrl+d to exit the container.

Run the commands ls in the container to view the list of files in the current directory.

Docker run -d

Use the -d parameter to create a container that runs in the background as a process.

>docker run -d --name=ubuntu-test ubuntu /bin/sh -c "while true; do echo hello world;

sleep 1; done"

-d : run in the background

--name : set the name of container

f64bd4 : container ID

Docker ps

To confirm that the container is running, you can check it through command docker ps

>docker ps

• CONTAINER ID: container ID.

• IMAGE: image used.

• COMMAND: the command that runs when the container is started.

• CREATED: the creation time of the container.

• STATUS: container status.

• PORTS: port information of the container and the connection type used (tcp\udp).

• NAMES: automatically assigned container name.

Docker logs

Use the docker logs command in the host to view the standard output in the container.

>docker logs ubuntu-test

>docker logs f64bd4

Docker attach / exec

When the -d parameter is used, the container will enter the background after starting. At

this time, you can enter the container through the following command:

>docker attach ubuntu-test

>docker attach f21d01

>docker exec -it ubuntu-test /bin/bash

>docker exec -it f21d01 /bin/bash

>docker exec ubuntu-test echo “Hello world”

>docker exec f21d01 “Hello world”

stopped

Docker stop / restart / rm

To stop a container, use command docker stop.

>docker stop ubuntu-test

>docker stop f64bd4

To restart a container, use command docker restart.

>docker restart ubuntu-test

>docker restart f64bd4

To remove a container, use command docker rm.

>docker rm ubuntu-test

>docker rm f64bd4

To remove all the stopped container, use following command

>docker container prune

Docker container connection

Network applications can be run in the container. To allow external access to these

applications, you can specify the port mapping through the -P or -p parameter.

>docker run -d -P training/webapp python app.py

>docker run -d -p 5000:5000 training/webapp python app.py

>docker run -d -p 127.0.0.1:5001:5000 training/webapp python app.py

>docker run -d -p 127.0.0.1:5000:5000/udp training/webapp python app.py

-P : randomly map the network port used inside the container to the host

-p : map the network port used inside the container to the specified host port

The docker port command allows us to quickly view the mapping of ports.

>docker port e91e42 5000

Docker commit

When the image we downloaded from the docker image repository cannot meet our

needs, we can change the image in the following two ways:

1.Update the image from the container that has been created and commit the image

>docker run -it ubuntu /bin/bash

>apt-get update

>exit

>docker commit -m="has update"

-a="chen" b7e719 chen/ubuntu:v2

-m : commit info

-a : author

b7e719 : container ID

chen/ubuntu:v2 : target image name

Dockerfile

When the image we downloaded from the docker image repository cannot meet our

needs, we can change the image in the following two ways:

2.Use the dockerfile to create a new image

Dockerfile is a text file used to build images. The text contains commands and

instructions required for building images.

Every time the dockerfile instruction is executed, a new layer will be created on the

docker.

In an empty directory, create a new file named Dockerfile, and add the following

contents to the file：
FROM nginx

RUN echo '这是一个本地构建的nginx镜像' > /usr/share/nginx/html/index.html

Docker build

Execute the command docker build under the directory of dockerfile.

>docker build -t nginx:v3 .

-t : reporitory:tag

. : context path of the execution

Dockerfile instructions

FROM

Customized images are based on FROM images. Nginx here is the basic image required for

customization.

FROM <image>

RUN

Execute the following command-line commands.

RUN <command-line command>

<command-line command > is equivalent to the shell command operated on the terminal.

RUN ["<executable>", "<param1>", "<param2>"]

For example: RUN ["./test.php", "dev", "offline"] is equivalent to RUN ./test.php dev offline

WORKDIR

Specify the working directory. The working directory specified with workdir will exist in every

layer of the image.(the working directory specified by WORKDIR must be created in advance)

WORKDIR <working directory path>

Dockerfile instructions

COPY

Copy files or directories from the context directory to the specified path in the container.

COPY [--chown=<user>:<group>] <source path1>... <destination path>

COPY [--chown=<user>:<group>] ["<source path1>",... "<destination path>"]

CMD

Similar to the RUN instruction, used to run programs.

CMD <command-line command>

CMD ["<executable>",">param1>","<param2>",...]

CMD ["<param1>","<param2>",...]

Provide default parameters for the program specified by the ENTRYPOINT instruction.

Diff:

1.run time: CMD docker run; RUN docker build.

2.The program specified by CMD instruction can be overwritten by the program specified in

docker run command.

3.If there are multiple CMD instructions in dockerfile, only the last one works.

Dockerfile instructions

ENTRYPOINT

Similar to CMD instruction, but it will not be overwritten by the instruction specified by the

command line parameters of docker run, and these command line parameters will be sent to

the program specified by the ENTRYPOINT instruction as parameters.

If there are multiple ENTRYPOINT instructions in dockerfile, only the last one works.

ENTRYPOINT ["<executeable>","<param1>","<param2>",...]

Assume that the nginx:test image has been built through dockerfile:

FROM nginx

ENTRYPOINT ["nginx", "-c"]

CMD ["/etc/nginx/nginx.conf"]

>docker run nginx:test

nginx -c /etc/nginx/nginx.conf

>docker run nginx:test -c /etc/nginx/new.conf

nginx -c /etc/nginx/new.conf

03

Introduction to Kubernetes

Overview

What is Kubernetes?

Kubernetes is a portable, extensible, open source platform for managing containerized workloads

and services, that facilitates both declarative configuration and automation. Kubernetes provides

some generally applicable features common to PaaS offerings, such as deployment, scaling, load

balancing, and lets users integrate their logging, monitoring, and alerting solutions. But Kubernetes

operates at the container level rather than at the hardware level.

Why is Kubernetes?

Containers are a good way to bundle and run your applications. In a production environment, you

need to manage the containers that run the applications and ensure that there is no downtime. For

example, if a container goes down, another container needs to start.

Kubernetes provides you with a framework to run distributed systems resiliently. It takes care of

scaling and failover for your application, provides deployment patterns, and more.

Overview

Kubernetes provide:

• Service discovery and load balancing

• Storage orchestration

• Automated rollouts and rollbacks

• Automatic bin packing

• Self-healing

• Secret and configuration management

Kubernetes cluster

A Kubernetes cluster consists of a set of worker machines, called nodes, that run

containerized applications. Every cluster has at least one worker node.

• The worker node(s) host the Pods that are the components of the application workload.

• The control plane manages the worker nodes and the Pods in the cluster.

In production environments, the control plane usually runs across multiple computers and a

cluster usually runs multiple nodes, providing fault-tolerance and high availability.

Control Plane Components

The control plane's components make global

decisions about the cluster (for example,

scheduling), as well as detecting and

responding to cluster events (for example,

starting up a new pod when a deployment's

replicas field is unsatisfied)

1.kube-apiserver

The API server is a component of the

Kubernetes control plane that exposes the

Kubernetes API. The API server is the front end

for the Kubernetes control plane.

2.etcd

Consistent and highly-available key value store

used as Kubernetes' backing store for all

cluster data.

Control Plane Components

3.kube-scheduler

Control plane component that watches for newly

created Pods with no assigned node, and selects

a node for them to run on.

4.kube-controller-manager

Control plane component that runs controller

processes.

• Node controller

• Job controller

• Endpoints controller

• Service Account & Token controllers

Control Plane Components

5.cloud-controller-manager

A Kubernetes control plane component that

embeds cloud-specific control logic. The cloud

controller manager lets you link your cluster into

your cloud provider's API, and separates out the

components that interact with that cloud platform

from components that only interact with your

cluster.

• Node controller

• Route controller

• Service controller

Node Components

The node components run on every node,

maintaining running pods and providing the

Kubernetes runtime environment.

1.kubelet

An agent that runs on each node in the cluster. It

makes sure that containers are running in a Pod.

2.kube-proxy

kube-proxy is a network proxy that runs on each

node in your cluster, implementing part of the

Kubernetes Service concept.

3.Container runtime

The container runtime is the software that is responsible for running containers.

Kubernetes supports container runtimes such as docker, containerd, CRI-O, and

any other implementation of the Kubernetes CRI (Container Runtime Interface)

Kubernetes Objects

Kubernetes objects are persistent entities in the Kubernetes system. Kubernetes uses

these entities to represent the state of your cluster.

Specifically, they can describe:

1.What containerized applications are running (and on which nodes)

2.The resources available to those applications

3.The policies around how those applications behave, such as restart policies,

upgrades, and fault-tolerance

A Kubernetes object is a "record of intent"--once you create the object, the

Kubernetes system will constantly work to ensure that object exists. By creating an

object, you're effectively telling the Kubernetes system what you want your cluster's

workload to look like; this is your cluster's desired state.

Object Spec and Status

Almost every Kubernetes object includes two nested object fields that govern the object's

configuration: the object spec and the object status.

For objects that have a spec, you have to set this when you create the object, providing a

description of the characteristics you want the resource to have: its desired state.

The status describes the current state of the object, supplied and updated by the Kubernetes

system and its components. The Kubernetes control plane continually and actively manages every

object's actual state to match the desired state you supplied.

When you create an object in Kubernetes, you must provide the object spec that describes its

desired state, as well as some basic information about the object (such as a name). When you use

the Kubernetes API to create the object (either directly or via kubectl), that API request must

include that information as JSON in the request body. Most often, you provide the information to

kubectl in a .yaml file. kubectl converts the information to JSON when making the API request.

.yaml file

Here's an example .yaml file that shows the required fields and object spec for a Kubernetes

Deployment: (In Kubernetes, a Deployment is an object that can represent an application

running on your cluster.)

Required Fields:

• apiVersion - which version of the

Kubernetes API you're using to

create this object

• kind - what kind of object you

want to create

• metadata - wata that helps

uniquely identify the object,

including a name string, UID, and

optional namespace

• spec - what state you desire for

the object

Pod

Pods are the smallest deployable units of computing that you can create and manage in

Kubernetes.

A Pod is a group of one or more containers, with shared storage and network resources, and a

specification for how to run the containers. A Pod's contents are always co-located and co-

scheduled, and run in a shared context. A Pod models an application-specific "logical host": it

contains one or more application containers which are relatively tightly coupled.

The shared context of a Pod is a set of Linux namespaces, cgroups, and potentially other facets

of isolation - the same things that isolate a Docker container. Within a Pod's context, the

individual applications may have further sub-isolations applied.

Pod

The following is an example of a Pod which consists of a container running the image

nginx:1.14.2：

Pods in a Kubernetes cluster are used in two main ways:

• Pods that run a single container.

• Pods that run multiple containers that need to work together.

If you want to scale your application horizontally (to provide more overall resources by running

more instances), you should use multiple Pods, one for each instance. In Kubernetes, this is

typically referred to as replication.

Workload Resources

• Deployments:represent an application running on your cluster.

• ReplicaSet:to maintain a stable set of replica Pods running at any given time.

• StatefulSet:to manage stateful applications.

• DaemonSet:to ensures that all (or some) Nodes run a copy of a Pod.

• Jobs:creates one or more Pods and will continue to retry execution of the Pods until a

specified number of them successfully terminate.

04

Use of Kubernetes

Installation

1.Add and trust apt certificate
>curl https://mirrors.aliyun.com/kubernetes/apt/doc/apt-key.gpg | sudo apt-
key add -
Add source address
>sudo add-apt-repository "deb https://mirrors.aliyun.com/kubernetes/apt/
kubernetes-xenial main"

Installation

2.Update and install
>sudo apt update && sudo apt install -y kubelet kubeadm kubectl

3.Add completion
>source <(kubectl completion bash)
>source <(kubeadm completion bash)

Build k8s cluster

1.Modify host configuration
Execute the following two commands on Master and Worker respectively
to edit the corresponding file
>sudo vim /etc/hostname
>sudo vim /etc/hosts

master
> cat /etc/hosts
192.168.124.129 k8s-master
192.168.124.131 k8s-worker
> cat /etc/hostname
k8s-master
worker
> cat /etc/hosts
192.168.124.129 k8s-master
192.168.124.131 k8s-worker
> cat /etc/hostname
k8s-worker

Build k8s cluster

2.Edit the /etc/fstab file to prohibit the exchange of partitions
>vim /etc/fstab
/swapfile none swap sw 0 0
Perform this operation on the Master and Worker respectively, and restart
the machine.

3.Execute the following commands on the Master

 >sudo kubeadm init --apiserver-advertise-address <Master_IP> \

 --pod-network-cidr=10.244.0.0/16 \

--image-repository registry.cn-hangzhou.aliyuncs.com/google_containers

 <Master_IP> is the ip address of the Master

Build k8s cluster

4.The Master initialization is successful.
The last part of the output information, corresponding to the command of
Worker nodes to join the cluster,needs to be saved.

Build k8s cluster

5.Follow the prompts in the output to execute the following commands：
>sudo mkdir -p $HOME/.kube
>sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
>sudo chown $(id -u):$(id -g) $HOME/.kube/config

6. Try to execute the following command:
>kubectl get node

Configure the environment, then the Master can execute the kubectl command

The status shows NotReady because the network has not been configured

Build k8s cluster

7.Execute the following command to install the flannel network plug-in:
>kubectl apply -f
https://raw.githubusercontent.com/coreos/flannel/master/Documentation/kube-flannel.yml

8.Execute the previously saved command on the Worker to join the cluster
>kubeadm join 192.168.159.129:6443 --token jb7jwz.bec6h580w1p9q9wa \

--discovery-token-ca-cert-hash
sha256:869f7cb8c60c2aa153eb11c93a97b64adac739b6bc19c354636460eb87211e0a

Build k8s cluster

9.Check the nodes on the Master
>kubectl get nodes

10.Check the correctness of pod
>kubectl get pods -A

The Worker node has joined the cluster, and the node status has changed to Ready

Create a Deployment

The following is an example of a Deployment.

It creates a ReplicaSet to bring up three nginx Pods:

Create a Deployment

Before starting, make sure that the kubernetes cluster of is up and running.

>kubectl get nodes

Create a deployment by running the following command:

>kubectl apply -f nginx_deployment.yaml

Edit nginx_deployment.yaml file

>vim nginx_deployment.yaml

>kubectl apply -f https://k8s.io/examples/controllers/nginx-

deployment.yaml

Create a Deployment

Check whether the deployment has been created

>kubectl get deployment

• NAME:name of the deployment in the cluster

• READY:the number of "copies" available for the application. The

displayed mode is "ready number / expected number"

• UP-TO-DATE:the number of copies that have been updated in order to

reach the desired state

• AVAILABLE: the number of copies of the application available to the user

• AGE: the time the application was running

To see the Deployment rollout status

>kubectl rollout status deployment/nginx-deployment

Create a Deployment

Get details of the Deployment

>kubectl describe deployment nginx-deployment

Create a Deployment

To see the ReplicaSet (rs) created by the Deployment

>kubectl get rs.

• NAME: the names of the ReplicaSets in the namespace

• DESIRED: the desired number of replicas of the application,

which you define when you create the Deployment. This is

the desired state

• CURRENT: how many replicas are currently running

• READY: how many replicas of the application are available

to your users

• AGE: the amount of time that the application has been

running

To check the Pods in the Deployment

>kubectl get pod -l app=nginx

Create a Deployment

Get details of the Pod

>kubectl describe pod <Pod-Name>

Create a Deployment

Get details of the Pod

>kubectl describe pod <Pod-Name>

Update a Deployment

Update the nginx Pods to use the nginx:1.16.1 image instead of the nginx:1.14.2 image

>kubectl set image deployment/nginx-deployment nginx=nginx:1.16.1

Alternatively, modify nginx_deployment.yaml file and reconfigure

Update a Deployment

Scale the Deployment to 4 Pods (replicas=4)

>kubectl scale deployment/nginx-deployment --replicas=4

Alternatively, modify nginx_deployment.yaml file and reconfigure

Delete a Deployment

Delete the deployment

>kubectl delete deployment nginx-deployment

感谢聆听

	幻灯片 1: 轻量级虚拟化：以容器为例
	幻灯片 2
	幻灯片 3
	幻灯片 4
	幻灯片 5
	幻灯片 6
	幻灯片 7
	幻灯片 8
	幻灯片 9
	幻灯片 10
	幻灯片 11
	幻灯片 12
	幻灯片 13
	幻灯片 14
	幻灯片 15
	幻灯片 16
	幻灯片 17
	幻灯片 18
	幻灯片 19
	幻灯片 20
	幻灯片 21
	幻灯片 22
	幻灯片 23
	幻灯片 24
	幻灯片 25
	幻灯片 26
	幻灯片 27
	幻灯片 28
	幻灯片 29
	幻灯片 30
	幻灯片 31
	幻灯片 32
	幻灯片 33
	幻灯片 34
	幻灯片 35
	幻灯片 36
	幻灯片 37
	幻灯片 38
	幻灯片 39
	幻灯片 40
	幻灯片 41
	幻灯片 42
	幻灯片 43
	幻灯片 44
	幻灯片 45
	幻灯片 46
	幻灯片 47
	幻灯片 48
	幻灯片 49
	幻灯片 50
	幻灯片 51
	幻灯片 52
	幻灯片 53
	幻灯片 54
	幻灯片 55
	幻灯片 56
	幻灯片 57
	幻灯片 58
	幻灯片 59
	幻灯片 60
	幻灯片 61
	幻灯片 62
	幻灯片 63
	幻灯片 64
	幻灯片 65
	幻灯片 66
	幻灯片 67
	幻灯片 68
	幻灯片 69
	幻灯片 70
	幻灯片 71
	幻灯片 72
	幻灯片 73
	幻灯片 74
	幻灯片 75

