
Lecture 4 Introduction to
Serverless Computing

上海交通大学

马汝辉

目 录

The Evolution of Cloud1

2

3

4

What is Serverless?

How does Serverless Work?

Challenges of Serverless
Adoption

01
The Evolution of

Cloud

The Tradition: On-Premise

https://www.cloudpanel.io/blog/on-premises-vs-cloud-computing/

On-premise entails an IT infrastructure where all hardware, software, and data storage are
managed onsite. It ensures complete control and is ideal for businesses to prioritize security and
direct oversight of their systems.

Cloud computing enables on-demand access to IT services on the Internet. Public clouds are third-
party-owned, delivering resources online.

The Tradition: On-Premise

https://www.hpe.com/emea_europe/en/what-is/on-premises-vs-cloud.html

Drawbacks of On-Premises Computing:

• High initial costs and capital expenses: Setting up a system on-premises requires a lot of
money upfront. Organizations must spend money on tools, networking equipment, and other
systems parts.

• Limited scale and the possibility of overprovisioning: On-premises setups may have trouble
scaling significantly when resource demand increases quickly. Organizations must correctly
predict what they will need in the future.

• IT management and maintenance complexities: On-premises equipment must be managed
and maintained constantly. This means keeping the hardware in excellent condition, updating
the software, adding security patches, and fixing problems. Organizations need skilled IT staff
to handle these jobs, which can add to business costs and resource use.

On-Premise → Cloud Computing

A Comprehensive Analysis of Cloud Service Models: IaaS, PaaS, and SaaS in the Context of Emerging
Technologies and Trend

IaaS, PaaS, and SaaS

https://www.bigcommerce.com/articles/ecommerce/saas-vs-paas-vs-iaas/

Infrastructure as a Service (IaaS)

https://www.ibm.com/think/topics/iaas-paas-saas

IaaS, or infrastructure as a service, is on-demand access to cloud-hosted physical and virtual
servers, storage and networking—the backend IT infrastructure for running applications and
workloads in the cloud.

• The difference is that the cloud service provider hosts, manages and maintains the hardware
and computing resources in its own data centers.

• IaaS customers use the hardware via an internet connection, and pay for that use on a
subscription basis.

• Typically IaaS customers can choose between virtual machines (VMs) hosted on shared
physical hardware (the cloud service provider manages virtualization) or bare metal servers
on dedicated (unshared) physical hardware.

• Customers can provision, configure and operate the servers and infrastructure resources.

Infrastructure as a Service (IaaS)
Benefits of IaaS include:

• Higher availability: With IaaS a company can create redundant servers easily, and even
create them in other geographies to ensure availability during local power outages or physical
disasters.

• Lower latency, improved performance: Because IaaS providers typically operate data
centers in multiple geographies, IaaS customers can locate apps and services closer to users
to minimize latency and maximize performance.

• Improved responsiveness: Customers can provision resources in a matter of minutes, test
new ideas quickly and quickly roll out new ideas to more users.

• Faster access to best-of-breed technology: Cloud providers compete with each other by
providing the latest technologies to their users, IaaS customers can take advantage of these
technologies much earlier (and at far less cost) than they can implement them on premises.

https://www.ibm.com/think/topics/iaas-paas-saas

Infrastructure as a Service (IaaS)
Popular examples of IaaS:

AWS EC2

Google Compute Engine (GCE)
Digital Ocean

Platform as a Service (PaaS)
PaaS, or platform as a service, is on-demand access to a complete, ready-to-use, cloud-hosted
platform for developing, running, maintaining and managing applications.

• The cloud services provider hosts, manages, and maintains all the hardware and software
included in the platform—servers (for development, testing and deployment), operating system
(OS) software, storage, networking, databases, middleware, runtimes, frameworks,
development tools—as well as related services for security, operating system and software
upgrades, backups and more.

• Users access the PaaS through a graphical user interface (GUI), where development or
DevOps teams can collaborate on all their work across the entire application lifecycle including
coding, integration, testing, delivery, deployment and feedback.

https://www.ibm.com/think/topics/iaas-paas-saas

Platform as a Service (PaaS)
The primary benefit of PaaS is that it allows customers to build, test, deploy run, update and scale
applications more quickly and cost-effectively than they might if they had to build out and manage
their own on-premises platform. Other benefits include:

• Faster time to market: PaaS enables development teams to spin-up development, testing and
production environments in minutes, rather than weeks or months.

• Low- to no-risk testing and adoption of new technologies: PaaS platforms typically include
access to a wide range of the latest resources up and down the application stack.

• Simplified collaboration: As a cloud-based service, PaaS provides a shared software
development environment, giving development and operations teams access to all the tools
they need, from anywhere with an Internet connection.

• A more scalable approach: With PaaS, organizations can purchase extra capacity for building,
testing, staging and running applications whenever they need it.

https://www.ibm.com/think/topics/iaas-paas-saas

Platform as a Service (PaaS)
Popular examples of PaaS:

AWS Elastic Beanstalk

Windows Azure

Google APP Engine

Software as a Service (SaaS)
SaaS, or software as a service, is on-demand access to ready-to-use, cloud-hosted application
software.

• Users pay a monthly or annual fee to use a complete application from within a web browser,
desktop client or mobile app. The application and all of the infrastructure required to deliver it—
servers, storage, networking, middleware, application software, data storage—are hosted and
managed by the SaaS vendor.

• Typically, the vendor ensures a level of availability, performance and security as part of a
service level agreement (SLA). Customers can add more users and data storage on demand
at additional cost.

https://www.ibm.com/think/topics/iaas-paas-saas

Software as a Service (SaaS)
The main benefit of SaaS is that it offloads all infrastructure and application management to the
SaaS vendor.

All the user has to do is create an account, pay the fee and start using the application. The vendor
handles everything else, from maintaining the server hardware and software to managing user
access and security, storing and managing data, implementing upgrades and patches and more.

https://www.ibm.com/think/topics/iaas-paas-saas

Serverless Computing
Popular examples of SaaS:

BigCommerce

Google Workspace

Serverless Computing
Serverless takes the abstraction offered by PaaS to the next level, particularly with Function as a
Service (FaaS).

• While PaaS provides a platform for you to deploy your entire application (or microservices), you
often still think in terms of constantly running servers or instances that you configure for
scaling. With PaaS, you might define how many instances of your application to run, and you
still pay for that allocated capacity, even if it‘s idle.

• Serverless (specifically FaaS) pushes this further by abstracting away the runtime
environment itself and focusing purely on the execution of individual functions triggered by
events.

02
What is

Serverless?

What is Serverless?

https://www.ibm.com/think/topics/serverless

Serverless does not mean "no servers." The name notwithstanding, servers in serverless
computing are managed by a cloud service provider (CSP).

Developers can focus on writing the best front-end application code and business logic with
serverless computing.

The cloud provider handles the rest—provisioning the cloud infrastructure required to run the code
and scaling the infrastructure up and down on demand as needed.

Moreover, developers never pay for idle capacity with serverless. The cloud provider spins up and
provisions the required computing resources on demand when the code executes and spins them
back down again—called ''scaling to zero''—when execution stops.

The Origins of Serverless

https://www.ibm.com/think/topics/serverless

Serverless originated in 2008 when Google released Google App Engine (GAE), a platform for
developing and hosting web applications in Google-managed data centers.

 In 2014, Amazon introduced AWS Lambda, the first serverless platform. Named after functions
from lambda calculus and programming, AWS Lambda, a FaaS model, helped the serverless
computing framework gain mass-market appeal and rapid adoption among software developers.

In 2016, Microsoft Azure Functions and Google Cloud Functions launched their serverless
platforms.

The Serverless Ecosystem
Serverless and FaaS

• Serverless is more than function as a service (FaaS)—the cloud computing service that
enables developers to run code or containers in response to specific events or requests
without specifying or managing the infrastructure required to run the code.

• FaaS is the compute model central to serverless, and the two terms are often used
interchangeably. Compared to FaaS, serverless is an entire stack of services that can
respond to specific events or requests and scale to zero when no longer in use—and for which
provisioning, management and billing are handled by the cloud provider and invisible to
developers.

• In addition to FaaS, these services include databases and storage, Application
programming interface (API) gateways and event-driven architecture.

https://www.ibm.com/think/topics/serverless

The Serverless Ecosystem
Serverless databases and storage

• Databases (SQL and NoSQL) and storage (particularly object storage) are the foundation of
the data layer.

• A serverless approach to these technologies involves transitioning away from provisioning
“instances” with defined capacity, connection and query limits and moving toward models that
scale linearly with demand in both infrastructure and pricing.

https://www.ibm.com/think/topics/serverless

The Serverless Ecosystem
API gateways

• API gateways act as proxies to web application actions and provide HTTP method routing,
client ID and secrets, rate limits, CORS, viewing API usage, viewing response logs and API
sharing policies.

https://www.ibm.com/think/topics/serverless

The Serverless Ecosystem
Event-driven architecture (EDA)

• Serverless architectures work well for event-driven and stream-processing workloads, most
notably the open-source Apache Kafka event streaming platform.

• Automated serverless functions are stateless and designed to handle individual events. These
functions have become an essential part of event-driven architecture (EDA)—a software design
model built around the publication, capture, processing and storage of events.

• In an EDA framework, event producers (for example, microservices, APIs, IoT devices) send
real-time event notifications to event consumers, activating specific processing routines.

https://www.ibm.com/think/topics/serverless

The Serverless Ecosystem
Containers, Kubernetes and Knative

• Serverless applications are often deployed in containers.

• Kubernetes is an open-source container orchestration platform that automates container
deployment, management and scaling. This automation dramatically simplifies the
development of containerized applications.

• Knative is an open-source extension to Kubernetes that provides a serverless framework.
Knative works by abstracting away the code and handling the network routing, event triggers
and autoscaling for serverless execution.

https://www.ibm.com/think/topics/serverless

Pros and Cons of Serverless
Pros

• Improved developer productivity

• Pay for execution only

• Develop in any language

• Streamlined development or DevOps cycles

• Cost-effective performance

• Reduce latency

• Usage visibility

https://www.ibm.com/think/topics/serverless

Cons

• Less control

• Vendor lock-in

• Slow startup (aka, cloud start)

• Complex testing and debugging

• Higher cost for running long applications

Serverless Applications

A simple serverless application model

①The serverless system receives triggered
API queries from the users.

②The controller validates them, and invokes
the functions by creating new sandboxes
(aka the cold startup) or reusing running
warm ones (aka the warm startup).

③Each function invocation runs in an
individual container or a virtual machine.
The serverless system can scale them
horizontally according to the actual
application workload.

④ Each execution worker accesses a
backend database to save execution results.

By further configuring triggers and bridging
interactions, users can customize the execution
for complex applications:
• web applications
• real-time data processing
• AI reasoning
• video transcoding
• ...

①

②

③
④

Serverless Applications
Case 1: Web Applications

O&M-free Function Compute allows
frontend engineers to build cloud-
native web applications by writing
business code, effectively improving
the publication and iteration efficiency
and reduces O&M costs.

Benifits:
• Free from O&M operations and

build applications more efficiently
• Elastically handle load peaks and

valleys with high availability
features

• Provide cost-effective and high-
performance services

• Smoothly migrate traditional
applications to function compute

Serverless Applications
Case 2: Real-time Data Processing

Function Compute provides multiple event
sources. The event triggering mechanism can
process data in real time with just a few lines of
code and simple configurations. For example, the
mechanism can decompress OSS packages,
cleanse logs generated by Log Service or
Tablestore data, and customize consumption of
MNS messages.

Benifits:
• Integrate multiple easy-to-configure

event sources
• Flexibly customize processing logic

Serverless Applications
Case 3: AI Reasoning

O&M-free and elastically scalable
Function Compute allows algorithm
engineers to convert trained models
into elastic and highly available
reasoning services.

Benifits:
• Enable AI engineers to focus more on

algorithms and avoid complex O&M
operations

• Mobilize tens of thousands of computing
resources to eliminate the computing
power bottleneck

• Provide multiple versions for A/B testing to
reduce model-launching risks

• Install third-party libraries by one click to
smoothly debug in local environments

Serverless Applications
Case 4: Video Transcoding

Function Compute and Function Flow
can be used together to create elastic
and highly available Serverless video
processing systems that have
enhanced performance and efficiency
as well as lower costs.

Benifits:
• Flexible transcoding: support custom

transcoding processing logic
• Low cost: provide costs reductions of

over 75%
• Parallel transcoding: automatically

scale based on the number of video
files

• Fast migration: lower migration costs
and simplified operations

03
How Serverless

Works

Serverless Platforms

Commercial Serverless Platforms
• AWS Lambda
• Google Cloud Functions
• Microsoft Azure Functions
• IBM Cloud Functions
• Alibaba Cloud Function Compute
• Tencent Cloud's Serverless Cloud Function (SCF)
• ...

Open-source Serverless Platforms
• OpenWhisk
• OpenFaaS
• Kubeless
• Knative
• Fission
• Nuclio
• ...

OpenWhisk

OpenWhisk is an event-driven compute platform also referred to as Serverless computing or as
Function as a Service (FaaS) that runs code in response to events or direct invocations.

Characteristics
• deploys anywhere
• write functions in any language
• integrate easily with many popular services
• combine your functions into rich compositions
• scaling per-request
• optimal utilization

OpenWhisk offers a rich programming model for
• creating serverless APIs from functions
• composing functions into serverless workflows
• connecting events to functions using rules and triggers

the high-level OpenWhisk architecture

OpenWhisk

Examples of Events include
• changes to database records
• IoT sensor readings that exceed

a certain temperature
• new code commits to a GitHub

repository
• HTTP requests from web or

mobile apps
• ...

Events from external and internal
event sources are channeled
through a trigger, and rules allow
actions to react to these events.

the high-level OpenWhisk architecture

OpenWhisk

Actions can be
• small snippets of code

(JavaScript, Swift and many
other languages are supported)

• custom binary code embedded
in a Docker container

Actions in OpenWhisk are instantly
deployed and executed whenever a
trigger fires.

The more triggers fire, the more
actions get invoked. If no trigger
fires, no action code is running, so
there is no cost. the high-level OpenWhisk architecture

OpenWhisk

In addition to associating actions
with triggers, it is possible to
directly invoke an action by using
• the OpenWhisk API
• CLI
• iOS SDK

A set of actions can also be chained
without having to write any code.

Each action in the chain is invoked
in sequence with the output of one
action passed as input to the next in
the sequence.

the high-level OpenWhisk architecture

OpenWhisk

With traditional long-running virtual
machines or containers, it is
common practice to deploy multiple
VMs or containers to be resilient
against outages of a single instance.

However, OpenWhisk offers an
alternative model with no
resiliency-related cost overhead.
The on-demand execution of
actions provides inherent scalability
and optimal utilization, as the
number of running actions always
matches the trigger rate.

the high-level OpenWhisk architecture

OpenWhisk

Integrations with additional services
and event providers can be added
with packages. A package is a
bundle of feeds and actions.

A feed is a piece of code that
configures an external event source
to fire trigger events.

Actions in packages represent
reusable logic that a service
provider can make available so that
developers not only can use the
service as an event source, but also
can invoke APIs of that service. the high-level OpenWhisk architecture

OpenWhisk

An existing catalog of packages
offers a quick way to enhance
applications with useful capabilities,
and to access external services in
the ecosystem.

Examples of external services that
are OpenWhisk-enabled include
• Cloudant
• The Weather Company
• Slack
• GitHub.

the high-level OpenWhisk architecture

OpenWhisk
Being an open-source project, OpenWhisk stands
on the shoulders of giants, including
• Nginx
• Kafka
• Docker
• CouchDB
All of these components come together to form a
“serverless event-based programming service”.

The system itself mainly consists of only two
custom components, the Controller and the
Invoker. Everything else is already there,
developed by so many people out there in the
open-source community.

To explain all the components in more detail, lets
trace an invocation of an action through the
system as it happens.

The internal flow of processing

OpenWhisk

① Entering the system: nginx

The internal flow of processing

OpenWhisk’s user-facing API is completely HTTP
based and follows a RESTful design.

 As a consequence, the command sent via the wsk
CLI is essentially an HTTP request against the
OpenWhisk system.

The first entry point into the system is through
nginx, “an HTTP and reverse proxy server”.

It is mainly used for SSL termination and forwarding
appropriate HTTP calls to the next component.

①

OpenWhisk

② Entering the system: Controller

The internal flow of processing

Not having done much to our HTTP request, nginx
forwards it to the Controller.

It is a Scala-based implementation of the actual
REST API and thus serves as the interface for
everything a user can do, including CRUD
requests for your entities in OpenWhisk and
invocation of actions.

The Controller first disambiguates what the user is
trying to do. It does so based on the HTTP method
you use in your HTTP request.

As per translation above, the user is issuing a
POST request to an existing action, which the
Controller translates to an invocation of an action.

②

OpenWhisk

③ Authentication and Authorization: CouchDB

The internal flow of processing

Now the Controller verifies who you are
(Authentication) and if you have the privilege to do
what you want to do with that entity (Authorization).

The credentials included in the request are verified
against the so-called subjects database in a
CouchDB instance.

It is checked that the user exists in OpenWhisk’s
database and that it has the privilege to invoke the
action. The latter effectively gives the user the
privilege to invoke the action, which is what he
wishes to do.

As everything is sound, the gate opens for the next
stage of processing.

③

OpenWhisk

④ Who’s there to invoke the action: Load Balancer

The internal flow of processing

The Load Balancer, which is part of the Controller,
has a global view of the executors available in the
system by checking their health status continuously.

Those executors are called Invokers.

The Load Balancer, knowing which Invokers are
available, chooses one of them to invoke the action
requested.

④

OpenWhisk

⑤ Please form a line: Kafka

The internal flow of processing

From now on, mainly two bad things can happen to
the invocation request sent in:
• The system can crash, losing your invocation.
• The system can be under such a heavy load, that

the invocation needs to wait for other invocations
to finish first.

The answer to both is Kafka, “a high-throughput,
distributed, publish-subscribe messaging system”.

Controller and Invoker solely communicate through
messages buffered and persisted by Kafka.

Once Kafka has confirmed that it got the message,
the HTTP request to the user is responded to with
an ActivationId. The user will use that later on, to
get access to the results of this specific invocation.

⑤

OpenWhisk

⑥ Actually invoking the code already: Invoker

The internal flow of processing

The Invoker is the heart of OpenWhisk. The Invoker’s
duty is to invoke an action.To execute actions in an
isolated and safe way it uses Docker.

Docker is used to setup a new self-encapsulated
environment (called container) for each action that we
invoke in a fast, isolated and controlled way.

In a nutshell, for each action invocation a Docker
container is spawned, the action code gets injected, it
gets executed using the parameters passed to it, the
result is obtained, the container gets destroyed.

This is also the place where a lot of performance
optimization is done to reduce overhead and make
low response times possible.

⑥

OpenWhisk

⑦ Storing the results: CouchDB again

The internal flow of processing

As the result is obtained by the Invoker, it is stored into
the activations database as an activation under the
ActivationId mentioned further above. The activations
database lives in CouchDB.

The Invoker gets the resulting JSON object back from
the action, grabs the log written by Docker, puts them
all into the activation record and stores it into the
database.

The record contains both the returned result and the
logs written. It also contains the start and end time of
the invocation of the action.

⑦

04
Challenges of

Serverless
Adoption

Limitations of Serverless Computing Platforms

Four limits in the current state of serverless computing：

1. Inadequate storage for fine-grained operations.

2. Lack of fine-grained coordination.

3. Poor performance for standard communication patterns.

4. Predictable Performance.

Limitation 1: Storage
The stateless nature of

serverless platforms
The fine-grained state sharing

needs of applications
 difficult to support

The properties of existing storage services offered by cloud providers

green for good
orange for medium
red for poor

Persistence and availability
guarantees describe how well the
system tolerates failures:
• Local provides reliable storage at

one site
• Distributed ensures the ability to

survive site failures
• Ephemeral describes data that

resides in memory and is subject to
loss

Limitation 1: Storage

Object storage services
• Such as AWS S3, Azure Blob

Storage, and Google Cloud
Storage

• Highly scalable and provide
inexpensive long-term object
storage

• High access costs and high
access latencies

The properties of existing storage services offered by cloud providers

Limitation 1: Storage

Key-value databases
• Such as AWS DynamoDB,

Google Cloud Datastore, and
Azure Cosmos DB

• Provide high IO Per Second
(IOPS)

• Expensive and can take a long
time to scale up

• Not fault tolerant and not
autoscale

The properties of existing storage services offered by cloud providers

Limitation 1: Storage

“Ideal” storage service for
serverless computing
• Transparent provisioning

• Equivalent of compute
autoscaling

• Different applications will likely
motivate different guarantees
of persistence and availability

• Low access costs and low
access latencies

The properties of existing storage services offered by cloud providers

Limitation 2: Coordination
If task A uses task B’s output, there must be a way for A to
know when its input is available.

However, none of the existing cloud storage services
come with notification capabilities.

Current methods:
• Cloud providers offer stand-alone notification services,

such as SNS and SQS, but with significant latency and
be costly when used for fine grained coordination.

• Applications themselves manage a VM-based system
that provides notifications, as in ElastiCache and
SAND.

• Applications themselves implement their own
notification mechanism, such as in ExCamera.

Limitation 3: Communication

Broadcast, aggregation, and
shuffle are some of the most
common communication primitives
in distributed systems.

Communication patterns for these
primitives for both VM-based and
function-based solutions.

Note the significantly lower number
of remote messages for the VM-
based solutions. This is because VM
instances offer ample opportunities
to share, aggregate, or combine
data locally across tasks before
sending it or after receiving it.

Limitation 3: Communication
Case: Distributed Machine Learning

Parameter Server Serverless Parameter Server

Limitation 3: Communication
Feasible Optimization for Communication
(1)Optimizing the storage server
• Current storage services designed for short-running

functions and thus become a performance bottleneck.

• Pocket introduces multi-tier storage including DRAM,
SSD and HDD.

• Locus also combines different kinds of storage devices to
achieve both performance and cost-efficiency for
serverless analytics

(2)Optimizing the communication path
• Optimize the communication path when the relationship

between functions is known in advance.

• Another line of work tries to kick the storage server out of
the communication path with network mechanisms.

Limitation 4: Cold Start

Although cloud functions have a much lower startup latency than traditional VM-based instances,
the delays incurred when starting new instances can be high for some applications.

Three factors impacting cold start latency：
（1）the time it takes to start a cloud function
（2）the time it takes to initialize the software environment
（3）application-specific initialization in user code

Feasible optimization for cold start
• Container cache: When a function is finished, the serverless framework can retain its runtime

environment.
• Pre-warming: OpenWhisk can pre-launch Node.js containers if it has observed that the

workload mainly consists of Node.js-based functions.
• Container optimization: Provide lean containers with much faster boot time than vanilla ones
• Looking for other abstractions: Google gVisor, AWS FireCracker, Unikernel

Thanks

