_/?W?@JJT

Lecture 4 Introduction to
Serverless Computing

5k

BB

o — — e Ry SN ™ - = r
/ - ! — S G e ;
g~ B -

C'hallgnéer‘s of -Serverles
Adoption

The Evolution of
Cloud

BT i
eyl ==-000 | | 1000

The Tradition: On-Premise

On-premise entails an IT infrastructure where all hardware, software, and data storage are
managed onsite. It ensures complete control and is ideal for businesses to prioritize security and
direct oversight of their systems.

Cloud computing enables on-demand access to IT services on the Internet. Public clouds are third-
party-owned, delivering resources online.

/Y\i%‘i@ﬂdﬁ L

https://www.cloudpanel.io/blog/on-premises-vs-cloud-computing/

The Tradition: On-Premise

Drawbacks of On-Premises Computing:

« High initial costs and capital expenses: Setting up a system on-premises requires a lot of
money upfront. Organizations must spend money on tools, networking equipment, and other

systems parts.

 Limited scale and the possibility of overprovisioning: On-premises setups may have trouble
scaling significantly when resource demand increases quickly. Organizations must correctly
predict what they will need in the future.

* |IT management and maintenance complexities: On-premises equipment must be managed
and maintained constantly. This means keeping the hardware in excellent condition, updating
the software, adding security patches, and fixing problems. Organizations need skilled IT staff
to handle these jobs, which can add to business costs and resource use.

/\T\J%‘i%ﬁdﬁ L

https://www.hpe.com/emea_europe/en/what-is/on-premises-vs-cloud.html

Traditional IT

Services
|

ON-SITE

Application

Runtime

Middle-ware

‘ User ‘

Management Operating System

Virtualization

Server

Storage

User
Management

Cloud Computing

Iaas

Application

Data

Runtime

Middle-ware

Operating System

Virtualization

Server

Storage

Networking

Models
PaasS
[T
User Application
Management
T/ I
Runtime
Middle-ware
Operating System
— Virtualization
Services
provide by
g Server
Model
Storage
Networking

Saas

Application
Data
Runtime

Middle-ware -
Services

provide by
Operating System Cloud

Model
Virtualization
Server

Storage

Networking

/V\i%‘i@ﬁdﬁ

A Comprehensive Analysis of Cloud Service Models: laaS, PaaS, and SaaS in the Context of Emerging

Technologies and Trend

Public IT cloud services market revenue worldwide from 2016 to 2020, by

segment (in billion U.S. dollars)

350
312.4
300
250
@ 233.4
@
-
1=}
7
= 20 185.1
5
B
f_ 150 143.24
8—
1]
100 90.48
35.9
= 25.8 _
0 C N _ |
2016 2017 2018 2019 2020
) Infrastructure as a service @ Platform as a service @ Software as a service
Source Additional Information:
IDC Worldwide; 2016 to 2020
& Statista 2022

/T\i"%‘i@ﬁdﬁ

https://www.bigcommerce.com/articles/ecommerce/saas-vs-paas-vs-iaas/

Infrastructure as a Service (laaS)

laaS, or infrastructure as a service, is on-demand access to cloud-hosted physical and virtual
servers, storage and networking—the backend IT infrastructure for running applications and
workloads in the cloud.

» The difference is that the cloud service provider hosts, manages and maintains the hardware
and computing resources in its own data centers.

 laaS customers use the hardware via an internet connection, and pay for that use on a
subscription basis.

« Typically laaS customers can choose between virtual machines (VMs) hosted on shared
physical hardware (the cloud service provider manages virtualization) or bare metal servers
on dedicated (unshared) physical hardware.

« Customers can provision, configure and operate the servers and infrastructure resources.

/\T\J%‘i%ﬁdﬁ

https://www.ibm.com/think/topics/iaas-paas-saas

Infrastructure as a Service (laaS)

Benefits of laaS include:

* Higher availability: With laaS a company can create redundant servers easily, and even
create them in other geographies to ensure availability during local power outages or physical
disasters.

« Lower latency, improved performance: Because laaS providers typically operate data
centers in multiple geographies, laaS customers can locate apps and services closer to users
to minimize latency and maximize performance.

* Improved responsiveness: Customers can provision resources in a matter of minutes, test
new ideas quickly and quickly roll out new ideas to more users.

» Faster access to best-of-breed technology: Cloud providers compete with each other by
providing the latest technologies to their users, laaS customers can take advantage of these
technologies much earlier (and at far less cost) than they can implement them on premises.

/\T\J%‘i%ﬁdﬁ L

https://www.ibm.com/think/topics/iaas-paas-saas

Infrastructure as a Service (laaS)

Popular examples of laaS:

rackspace.

£

Digital Ocean

©

Google Compute Engine (GCE)

AWS EC2

/Tf\i‘%‘i@ﬁdﬁ L

Platform as a Service (PaaS)

PaaS, or platform as a service, is on-demand access to a complete, ready-to-use, cloud-hosted
platform for developing, running, maintaining and managing applications.

* The cloud services provider hosts, manages, and maintains all the hardware and software
included in the platform—servers (for development, testing and deployment), operating system
(OS) software, storage, networking, databases, middleware, runtimes, frameworks,

development tools—as well as related services for security, operating system and software
upgrades, backups and more.

« Users access the PaaS through a graphical user interface (GUI), where development or
DevOps teams can collaborate on all their work across the entire application lifecycle including
coding, integration, testing, delivery, deployment and feedback.

/\T\J%‘i%ﬁdﬁ

https://www.ibm.com/think/topics/iaas-paas-saas

Platform as a Service (PaaS)

® The primary benefit of PaaS is that it allows customers to build, test, deploy run, update and scale
applications more quickly and cost-effectively than they might if they had to build out and manage
their own on-premises platform. Other benefits include:

» Faster time to market: PaaS enables development teams to spin-up development, testing and
production environments in minutes, rather than weeks or months.

* Low- to no-risk testing and adoption of new technologies: PaaS platforms typically include
access to a wide range of the latest resources up and down the application stack.

« Simplified collaboration: As a cloud-based service, PaaS provides a shared software
development environment, giving development and operations teams access to all the tools
they need, from anywhere with an Internet connection.

« A more scalable approach: With PaaS, organizations can purchase extra capacity for building,
testing, staging and running applications whenever they need it.

/\T\i"%‘i@ﬁdﬁ L

https://www.ibm.com/think/topics/iaas-paas-saas

Platform as a Service (PaaS)

Popular examples of PaaS:

Google APP Engine

AWS Elastic Beanstalk

Windows Azure

/Y\J%“?_Sﬁdﬁ L

Software as a Service (SaaS)

SaaS, or software as a service, is on-demand access to ready-to-use, cloud-hosted application
software.

« Users pay a monthly or annual fee to use a complete application from within a web browser,
desktop client or mobile app. The application and all of the infrastructure required to deliver it—
servers, storage, networking, middleware, application software, data storage—are hosted and
managed by the SaaS vendor.

« Typically, the vendor ensures a level of availability, performance and security as part of a
service level agreement (SLA). Customers can add more users and data storage on demand

at additional cost.

/\T\J%‘i%ﬁdﬁ L

https://www.ibm.com/think/topics/iaas-paas-saas

Software as a Service (SaaS)

® The main benefit of SaaS is that it offloads all infrastructure and application management to the
SaaS vendor.

® All the user has to do is create an account, pay the fee and start using the application. The vendor
handles everything else, from maintaining the server hardware and software to managing user
access and security, storing and managing data, implementing upgrades and patches and more.

/\T\J%‘i%ﬁdﬁ L

https://www.ibm.com/think/topics/iaas-paas-saas

Serverless Computing

Popular examples of SaaS:

ME & (x

BREOREB
o

BigCommerce

Google Workspace

/\T\i"%‘i@ﬁdﬁ L

Serverless Computing

Serverless takes the abstraction offered by PaaS to the next level, particularly with Function as a
Service (FaaS).

« While PaaS provides a platform for you to deploy your entire application (or microservices), you
often still think in terms of constantly running servers or instances that you configure for
scaling. With PaaS, you might define how many instances of your application to run, and you
still pay for that allocated capacity, even if it's idle.

« Serverless (specifically FaaS) pushes this further by abstracting away the runtime
environment itself and focusing purely on the execution of individual functions triggered by
events.

/\T\J%‘i%ﬁdﬁ

What is
Serverless?

i i

4

BT i
eyl ==-000 | | 1000

What is Serverless?

Serverless does not mean "no servers." The name notwithstanding, servers in serverless
computing are managed by a cloud service provider (CSP).

® Developers can focus on writing the best front-end application code and business logic with
serverless computing.

The cloud provider handles the rest—provisioning the cloud infrastructure required to run the code
and scaling the infrastructure up and down on demand as needed.

Moreover, developers never pay for idle capacity with serverless. The cloud provider spins up and
provisions the required computing resources on demand when the code executes and spins them
back down again—called "scaling to zero”—when execution stops.

/\T\J%‘i%ﬁdﬁ L

https://www.ibm.com/think/topics/serverless

The Origins of Serverless

Serverless originated in 2008 when Google released Google App Engine (GAE), a platform for
developing and hosting web applications in Google-managed data centers.

® |In 2014, Amazon introduced AWS Lambda, the first serverless platform. Named after functions
from lambda calculus and programming, AWS Lambda, a FaaS model, helped the serverless
computing framework gain mass-market appeal and rapid adoption among software developers.

In 2016, Microsoft Azure Functions and Google Cloud Functions launched their serverless

@

platforms.

AWS Lambda CLOUD FUNCTIONS
7/ 1 N\TFTSJT ﬂ

https://www.ibm.com/think/topics/serverless

The Serverless Ecosystem

Serverless and FaaS

« Serverless is more than function as a service (FaaS)—the cloud computing service that
enables developers to run code or containers in response to specific events or requests
without specifying or managing the infrastructure required to run the code.

» FaaS is the compute model central to serverless, and the two terms are often used
interchangeably. Compared to FaaS, serverless is an entire stack of services that can
respond to specific events or requests and scale to zero when no longer in use—and for which
provisioning, management and billing are handled by the cloud provider and invisible to
developers.

 In addition to FaaS, these services include databases and storage, Application
programming interface (APIl) gateways and event-driven architecture.

/\T\J%‘i%ﬁdﬁ L

https://www.ibm.com/think/topics/serverless

The Serverless Ecosystem

Serverless databases and storage
« Databases (SQL and NoSQL) and storage (particularly object storage) are the foundation of

the data layer.

» A serverless approach to these technologies involves transitioning away from provisioning
“‘instances” with defined capacity, connection and query limits and moving toward models that

scale linearly with demand in both infrastructure and pricing.

Amazon S3

/\T\i"%‘i&ﬂﬁ L

https://www.ibm.com/think/topics/serverless

The Serverless Ecosystem

API gateways

» API gateways act as proxies to web application actions and provide HTTP method routing,

client ID and secrets, rate limits, CORS, viewing API usage, viewing response logs and API

sharing policies.

—=

Web clientl

i
Y

—=

Web client2

<
Y

o

<
Amazon API Gateway

» M
> Bk
A

Elastic Load Balancers ECS Cluster ~ Amazon EC2 ' |
: Auto-Scaling |
goup

AWS Lambda functions

/docs
>

Amazon S3 buckets

/service3

>

Other services/servers

/\T\i"%‘i&ﬂﬁ

https://www.ibm.com/think/topics/serverless

The Serverless Ecosystem

Event-driven architecture (EDA)

» Serverless architectures work well for event-driven and stream-processing workloads, most
notably the open-source Apache Kafka event streaming platform.

« Automated serverless functions are stateless and designed to handle individual events. These
functions have become an essential part of event-driven architecture (EDA)—a software design
model built around the publication, capture, processing and storage of events.

 In an EDA framework, event producers (for example, microservices, APIs, |oT devices) send
real-time event notifications to event consumers, activating specific processing routines.

&8 kaifka

/\T\i"%‘i@ﬁdﬁ

https://www.ibm.com/think/topics/serverless

The Serverless Ecosystem

Containers, Kubernetes and Knative
» Serverless applications are often deployed in containers.

« Kubernetes is an open-source container orchestration platform that automates container
deployment, management and scaling. This automation dramatically simplifies the
development of containerized applications.

« Knative is an open-source extension to Kubernetes that provides a serverless framework.
Knative works by abstracting away the code and handling the network routing, event triggers
and autoscaling for serverless execution.

5

docker kubernetes

Kn ati/vue \u%i%ﬂﬁ

https://www.ibm.com/think/topics/serverless

Pros and Cons of Serverless

Pros Cons

* Improved developer productivity * Less control

« Pay for execution only Vendor lock-in

« Develop in any language Slow startup (aka, cloud start)

« Streamlined development or DevOps cycles Complex testing and debugging

» Cost-effective performance Higher cost for running long applications
« Reduce latency

« Usage visibility

/\T\J%’Z%ﬁdﬁ L

https://www.ibm.com/think/topics/serverless

Serverless Applications

@®The serverless system receives triggered
API queries from the users. Event

|| Cold Startup Container

@The controller validates them, and invokes .
the functions by creating new sandboxes Tr

(aka the cold startup) or reusing running
warm ones (aka the warm startup).

(@ Each function invocation runs in an
individual container or a virtual machine.
The serverless system can scale them
horizontally according to the actual
application workload.

@ Each execution worker accesses a
backend database to save execution results.

[| warm Startup Container
: Y] T | —
trigger =@r0"er validated %
. o execution result S
aa
@ @ invoc@t)ion result

A simple serverless application model

By further configuring triggers and bridging
interactions, users can customize the execution
for complex applications:

« web applications

real-time data processing

Al reasoning

video transcoding

/\N%JT@ L

Serverless Applications

Case 1: Web Applications

O&M-free Function Compute allows
frontend engineers to build cloud-
native web applications by writing
business code, effectively improving
the publication and iteration efficiency

and reduces O&M costs.

Benifits:

* Free from O&M operations and
build applications more efficiently

» Elastically handle load peaks and
valleys with high availability
features

* Provide cost-effective and high-
performance services

« Smoothly migrate traditional
applications to function compute

User

Visit Website
>

A
{ s
TableStore
A
v Read/Write meta info
AN Dl
o ms Back to FC ey N
> - 12 Mount NAS
- .
5 return response :
CDN FC
‘necord Logs
L

Loghub

/\T\J%Jwﬁ L

VPC Network

7N

" — .
> oy Ty

NAS

Serverless Applications

Case 2: Real-time Data Processing

Function Compute provides multiple event ~F
sources. The event triggering mechanism can A& | s
process data in real time with just a few lines of . e :
. ; - o ' N ot
code and simple configurations. For example, the & S
mechanism can decompress OSS packages,
cleanse logs generated by Log Service or i
Tablestore data, and customize consumption of
Trigger Function
MNS messages. v
N AL | sk st
Benlflts: s _- * Real-time filas processing such an unzip OSS packages;
. O N i = Real-time stream processing such as data cleasing;
 Integrate multiple easy-to-configure + Gosume message quee.
event sources
* Flexibly customize processing logic Store processing resuts
o <> Q@ <>

Serverless Applications

Case 3: Al Reasoning

O&M-free and elastically scalable
Function Compute allows algorithm

engineers to convert trained models (@ | waormerne TN A ey
into elastic and highly available — = g e i 9
reasoning services. o | erRests FC e 08
Benifits: i
« Enable Al engineers to focus more on S~ L PR P
algorithms and avoid complex O&M <©r 7 &
operations e | Tableswone oss
* Mobilize tens of thousands of computing
resources to eliminate the computng CoudSorage

power bottleneck

* Provide multiple versions for A/B testing to
reduce model-launching risks

 Install third-party libraries by one click to

smoothly debug in local environments VA RNE—=<1 m

Serverless Applications

Case 4: Video Transcoding

Function Compute and Function Floyv "T Ty CinooriiLo
can be used together to create elastic |- (Qgq - K\
and highly available Serverless video >

o 7
e o

. User Log E‘;-erwce .
processing systems that have FC
enhanced performance and efficiency ;up.oad Video to 0SS Tnmd Logs
as well as lower costs.

o e rchestration /

. < 6\ TriggersFC [<7 N calfnF : Enr;iqrtl ‘ _ N <\
Benifits: 7 N 4 N
» Flexible transcoding: support custom 0ss FC -

transcoding processing logic i
» Low cost: provide costs reductions of A
o - ¢ >\
over 75% " 4
» Parallel transcoding: automatically il S -y

scale based on the number of video
files
« Fast migration: lower migration costs

and simplified operations yanN—avutil

03

How Serverless
Works

BT i
eyl ==-000 | | 1000

Serverless Platforms

Commercial Serverless Platforms Open-source Serverless Platforms
« AWS Lambda * OpenWhisk

« Google Cloud Functions OpenFaaS

* Microsoft Azure Functions » Kubeless

* |IBM Cloud Functions Knative

» Alibaba Cloud Function Compute * Fission

« Tencent Cloud's Serverless Cloud Function (SCF) Nuclio

B O meEz

WS Lambda Google Cloud

®Kubeless 4 ® OpenWhisk”

m%ig\fﬂjﬁ L

OpenWhisk

OpenWhisk is an event-driven compute platform also referred to as Serverless computing or as
Function as a Service (FaaS) that runs code in response to events or direct invocations.

OpenWhisk offers a rich programming model for APACHE
« creating serverless APls from functions “ . ™
« composing functions into serverless workflows O penWh IS k
« connecting events to functions using rules and triggers
BT u | ossok

CRUD triggers, actions, and rules
Invoke actions

Characteristics

. deploys anywhere)

 write functions in any language = D SS—
* integrate easily with many popular services . L -, O 2 N @6
- combine your functions into rich compositions o))) oo
« scaling per-request

« optimal utilization o>>)

the high-level Openwp%s%h%ﬁb%gmm

OpenWhisk

ExampIeS of Events include - _ _ -
« changes to database records CRUD triggers, actions, and rules
« |oT sensor readings that exceed — nvolepetions

a certain temperature

« new code commits to a GitHub
repository

« HTTP requests from web or ’)>.
mobile apps i

)

Package

NodeJS

Swift NodeJS Docker

Service ecosytem

Invoke . Bluemix services

3rd party services

Package

] - Feed b))) Self-enabled services
Events from external and internal E— Docker

event sources are channeled)
through a trigger, and rules allow
actions to react to these events.

the high-level OpenWhisk architecture

m%ig\fﬂjﬁ

OpenWhisk

Actions can be

« small snippets of code
(JavaScript, Swift and many
other languages are supported)

e custom binary code embedded
in a Docker container

Actions in OpenWhisk are instantly
deployed and executed whenever a
trigger fires.

The more triggers fire, the more
actions get invoked. If no trigger
fires, no action code is running, so
there is no cost.

- _ _ o)
()

Package

)

Package

Trigger

Package

)

Package

)

CRUD triggers, actions, and rules
Invoke actions

NodeJS Service ecosytem

Swift NodeJS Docker 3rd party services

Self-enabled services

ﬁ.

Docker

the high-level OpenWhisk architecture

m%ig\fﬂjﬁ

OpenWhisk

In addition to associating actions
with triggers, it is possible to
directly invoke an action by using
» the OpenWhisk API

« CLI

« i0S SDK

A set of actions can also be chained
without having to write any code.

Each action in the chain is invoked
in sequence with the output of one
action passed as input to the next in
the sequence.

CRUD triggers, actions, and rules
Invoke actions
Package

)

Package

o)
_ ()

Service ecosytem

NodeJS
O))>

Package

Package

o>))
)

ﬁ

Docker

Swift NodeJS Docker

3rd party services

Self-enabled services

the high-level OpenWhisk architecture

m%ig\fﬂjﬁ L

OpenWhisk

With t.radltlonal Ion_g-runmng virtual B T = .
machines or containers, it is CRUD triggers, actions, and rules
common practice to deploy multiple — nvokepetions
VMs or containers to be resilient)
against outages of a single instance.

e NodeJS Service ecosytem
However, OpenWhisk offers an)

Trigger mm Invoke . Bluemix services

alternative model with no

g Package Swift NodeJS Docker 3rd party services
resiliency-related cost overhead. e °’>> Self-enabled services
The on-demand execution of . Rule
actions provides inherent scalability E— Docker

and optimal utilization, as the)
number of running actions always
matches the trigger rate.

the high-level OpenWhisk architecture

/\T\J%Jwﬁ

OpenWhisk

Integrations with additional services B . == .
and event providers can be added CRUD triggers, actions, and rules

with packages. A package is a — Invokefactions

bundle of feeds and actions. Feed

NodeJS

A feed is a piece of code that Package
. Feed

configures an external event source .

to fire trigger events.

Service ecosytem

Package Swift NodeJS Docker 3rd party services
Self-enabled services
Actions in packages represent Rule

reusable logic that a service — Docker
provider can make available so that
developers not only can use the

service as an event source, but also
can invoke APls of that service. the high-level OpenWhisk architecture

/\T\J%Jwﬁ

OpenWhisk

An existing catalog of packages = T = i
offers a quick way to enhance CRUD triggers, actions, and rules

applications with useful capabilities, — nvolepetions

and to access external services in)

the ecosystem.

NodeJS
Examples of external services that °’)>
are OgenWhisk-enabled include Tigger [Acton K] Acton S acion [§ ok [LR

Package

Service ecosytem

Package Swift NodeJS Docker 3rd party services
 (Cloudant Feed °)>> Self-enabled services
- The Weather Company . Rule

) S I a C k Package Docker

« GitHub.)

the high-level OpenWhisk architecture

m%ig\fﬂjﬁ

OpenWhisk

Being an open-source project, OpenWhisk stands
on the shoulders of giants, including

* Nginx

« Kafka

« Docker

« CouchDB

All of these components come together to form a
“serverless event-based programming service”.

The system itself mainly consists of only two
custom components, the Controller and the
Invoker. Everything else is already there,
developed by so many people out there in the
open-source community.

To explain all the components in more detail, lets
trace an invocation of an action through the
system as it happens.

v

\

B LS
& &

The internal flow of processing

7 VU N\TF=TSJT

an

OpenWhisk

@ Entering the system: nginx

OpenWhisk'’s user-facing APl is completely HTTP
based and follows a RESTful design.

As a consequence, the command sent via the wsk
CLlI is essentially an HTTP request against the
OpenWhisk system.

The first entry point into the system is through
nginx, “an HTTP and reverse proxy server”.

It is mainly used for SSL termination and forwarding
appropriate HTTP calls to the next component.

e
&5

The internal flow of processing

7 VU N\TF=TSJT

an

OpenWhisk

@ Entering the system: Controller

Not having done much to our HT TP request, nginx
forwards it to the Controller.

It is a Scala-based implementation of the actual
REST API and thus serves as the interface for
everything a user can do, including CRUD
requests for your entities in OpenWhisk and
invocation of actions.

The Controller first disambiguates what the user is
trying to do. It does so based on the HTTP method
you use in your HTTP request.

As per translation above, the user is issuing a
POST request to an existing action, which the

Controller translates to an invocation of an action.

ry
re

The internal flow of processing

7 VU N\TF=TSJT

an

OpenWhisk

(3 Authentication and Authorization: CouchDB

Now the Controller verifies who you are
(Authentication) and if you have the privilege to do

what you want to do with that entity (Authorization).

The credentials included in the request are verified
against the so-called subjects database in a
CouchDB instance.

It is checked that the user exists in OpenWhisk’s
database and that it has the privilege to invoke the
action. The latter effectively gives the user the
privilege to invoke the action, which is what he
wishes to do.

As everything is sound, the gate opens for the next
stage of processing.

r
re

The internal flow of processing

7 VU N\TF=TSJT

an

OpenWhisk

@ Who’s there to invoke the action: Load Balancer

The Load Balancer, which is part of the Controller,
has a global view of the executors available in the
system by checking their health status continuously.

Those executors are called Invokers.

The Load Balancer, knowing which Invokers are
available, chooses one of them to invoke the action
requested.

The internal flow of processing

/\“m%@ﬁdﬁ

OpenWhisk

(G Please form a line: Kafka

From now on, mainly two bad things can happen to

the invocation request sent in:

 The system can crash, losing your invocation.

« The system can be under such a heavy load, that
the invocation needs to wait for other invocations
to finish first.

The answer to both is Kafka, “a high-throughput,

distributed, publish-subscribe messaging system”.

Controller and Invoker solely communicate through
messages buffered and persisted by Kafka.

Once Kafka has confirmed that it got the message,
the HTTP request to the user is responded to with
an Activationld. The user will use that later on, to
get access to the results of this specific invocation.

ry
re

The internal flow of processing

7 VU N\TF=TSJT

an

OpenWhisk

® Actually invoking the code already: Invoker

The Invoker is the heart of OpenWhisk. The Invoker’s
duty is to invoke an action.To execute actions in an
isolated and safe way it uses Docker.

Docker is used to setup a new self-encapsulated
environment (called container) for each action that we
invoke in a fast, isolated and controlled way.

In a nutshell, for each action invocation a Docker
container is spawned, the action code gets injected, it
gets executed using the parameters passed to it, the
result is obtained, the container gets destroyed.

This is also the place where a lot of performance
optimization is done to reduce overhead and make
low response times possible.

Rk

The internal flow of processing

7 VU N\TF=TSJT

an

OpenWhisk

@ Storing the results: CouchDB again

As the result is obtained by the Invoker, it is stored into
the activations database as an activation under the
Activationld mentioned further above. The activations
database lives in CouchDB.

The Invoker gets the resulting JSON object back from @
the action, grabs the log written by Docker, puts them
all into the activation record and stores it into the
database.

The record contains both the returned result and the
logs written. It also contains the start and end time of
the invocation of the action.

Rk

The internal flow of processing

/\T\J%Jwﬁ L

Challenges of
Serverless
Adoption

111:% g NI
S0 s o 11 N 1=

Limitations of Serverless Computing Platforms g/

Four limits in the current state of serverless computing:

1. Inadequate storage for fine-grained operations.

2. Lack of fine-grained coordination.

3. Poor performance for standard communication patterns.

4. Predictable Performance.

/\T\J%Jwﬁ L

Limitation 1: Storage

The stateless nature of
serverless platforms

difficult to support

(1/s for 1 month)

: Elastic _
Ohbject Dsasbines Memory
Block Storage Pl Sda [.{: % ? Store (e.g., “Ideal”
Storage (op AWR! | T £ AWS Elas- storage
) . : (e.z., AWS Google e S
(e.g., AWS S3, Azure EFS i tiCache, service for
EBS, IBM | Blob Store, A Google serverless
z ; Google Datastore, :
Block Google : Cloud computing
Filestore) Azure i
Storage) Cloud & Memorys-
Storage) Cimnis tore)
=i DB)
Cloud functions access Yes YEE Ym Yes Yes
Transparent o) . Capacity i
Provisioning s only4 Y&@
Availability and Local & Diﬂu&ihﬂiﬁd, ted | Distrib &ﬂteﬂ Dis m:m o
UnacamL arions
Tsistence guarantees i
persistence guarantees | Persistent Perbht it Puruistont
Latency (mean) < lms - 4 — 10ms < Ims
Storage capacity
$0.10 $0.023 $0.30 $0.18-$0.25 ~$0.10
(1 GB/month) ' ' -
[E]| Throughput (1 - -
® $0.03 £0.0071
C| MB/s for 1 month) -
10PS I _ _
$0.03 $0.037 ~$0.03

The fine-grained state sharing
needs of applications

Persistence and availability
guarantees describe how well the
system tolerates failures:

* Local provides reliable storage at

one site

« Distributed ensures the ability to
survive site failures

 Ephemeral describes data that
resides in memory and is subject to

loss

green for good

orange for medium

red for poor

The properties of existing storage services offered by cloud providers

/\T\J%Jwﬁ

Limitation 1: Storage

: Elastic . .
_— Ut st Sh-iemfrar — Object storage services
(sTs torage : : tore (e.g., *ldea
Storage (e.g., AWS]i‘;leg S{E;ISH ézfg'ie AWS Elas- storage : SUCh as AWS 83, AZU re BlOb
(e.g., AWS || 83, Azure e tiCache, service for
EBS, IBM ||Elob Store, i il Google serverless Sto rage’ and Google CIOUd
Block Google Google Diasastong, Cloud computing
Filestore) Azure StO ra g e
Storage) Cloud Memorys-
Storage) Copinicn tore)
DB)

« Highly scalable and provide
inexpensive long-term object
storage

Cloud funetions access

Transparent
Provisioning

Availability and
persistence guarantees

« High access costs and high
access latencies

Latency (mean)

Storage capacity
(1 GB/month)
Throughput (1
MB/s for 1 month)
10PS
(1/s for 1 month)

Cost 9

The properties of existing storage services offered by cloud providers

/Y\J%“?_Sﬁdﬁ

Limitation 1: Storage

: Elastic
Object Memory Key-value databases
Block Storage Fila Soctan Da{.z:;has@ Store (e.g., “Tdeal™
Storage (e.g., AWS i {A‘WS Go;:sgg‘ie AWS Elas- storage : SUCh as AWS DynamODB,
(e.g., AWS | 83, Azure e tiCache, service for
EBS, IBM | Elob Store, i il Google serverless Google CIOUd DataStO re’ and
Block Google Google Diasastong, Cloud computing
Filestore) Azure AZU re COsmOS DB
Storage) Cloud Memorys-
Storage) Copinicn tore)
DB)

* Provide high 10 Per Second
(IOPS)

Cloud funetions access

Transparent
Provisioning

Availability and
persistence guarantees

 EXxpensive and can take a long
time to scale up

Latency (mean)

Storage capacity
(1 GB/month)
Throughput (1
MB/s for 1 month)
10PS
(1/s for 1 month)

* Not fault tolerant and not
autoscale

Cost 9

/Y\J%“?_Sﬁdﬁ L

The properties of existing storage services offered by cloud providers

Limitation 1: Storage

f'ft]sl'@

(1/s for 1 month)

The properties of existing storage services offered by cloud providers

Object Dﬂaﬁ:zc Memory
Block Storage v R [.{: ; Store (e.g., “Ideal”
Storage (e.g., AWS s 5 AWS Elas- storage
, - ! (e.g., AWS Google o g
(e.g., AWS 53, Azure EFS Clod tiCache, service for
EBS, IEM | Blob Store, : Google serverless
= : Google Datastore, ;
Block Google ; Cloud computing
Filestore) Azure i
Storage) Cloud . Memorys-
Storage) Crnic tore)
- DB)
Cloud functions access Yes Yﬂ Ym Ygg Yes
Transparent = Capacity i
Provisioning Yes unl}@ Y"d@
Availahility and Local & & : Bh & Diﬁ’tr;hlltﬂd ——
. i : arious
ersistence guarantees | Persistent -
2 Persistent | Persistent
Latency (mean) < lms
Storage capacity
$0.10 $0.18-$0.25
(1 GB/month) :
Throughput (1 S
$0.03
MB/s for 1 month)
I0PS [
$0.03

“Ideal” storage service for
serverless computing
« Transparent provisioning

* Equivalent of compute
autoscaling

» Different applications will likely
motivate different guarantees
of persistence and availability

* Low access costs and low
access latencies

/\“m%@ﬁdﬁ

Limitation 2: Coordination

If task A uses task B’s output, there must be a way for A to
know when its input is available.

However, none of the existing cloud storage services
come with notification capabilities.

Current methods:

« Cloud providers offer stand-alone notification services,
such as SNS and SQS, but with significant latency and
be costly when used for fine grained coordination. External

Storage

« Applications themselves manage a VM-based system
that provides notifications, as in ElastiCache and
SAND.

* Applications themselves implement their own
notification mechanism, such as in ExCamera.

/\T\J%Jwﬁ

Limitation 3: Communication

Broadcast, aggregation, and
shuffle are some of the most
common communication primitives
in distributed systems.

Communication patterns for these
primitives for both VM-based and
function-based solutions.

Note the significantly lower number
of remote messages for the VM-
based solutions. This is because VM
instances offer ample opportunities
to share, aggregate, or combine
data locally across tasks before
sending it or after receiving it.

O Functions/lasks DVM—based instances =g remote messages ---- local messages

solle 858

Aggregation

Broadcast

Shuffle

{a) VM-based communication patterns.

A A

Broadcast Aggregation

(b} Function-based communication patterns.

/\N%JT@

Limitation 3: Communication

Case: Distributed Machine Learning

Parameter Server Serverless Parameter Server

Server

7 =

Worker 2 e iy

wl |Aw, w| [Aw, wl |Aw, e,

F 3 F 3

Worker 1 \ .

Server

r A 4

Worker 1| | Worker 2 Worker n

Worker n

= \Norker: download mode|) Server: download gradient
=sesess=P \Norker: upload gradient => Server: upload model

/\”f\i"%‘@ﬁdﬁ L

Limitation 3: Communication

Feasible Optimization for Communication

(1)Optimizing the storage server
« Current storage services designed for short-running
functions and thus become a performance bottleneck.

* Pocket introduces multi-tier storage including DRAM,

Worker 1
SSD and HDD. \2 R

Worker 2 «&—- P ,
..... - <. Storage | Server

...... ::‘:’ —] —

* Locus also combines different kinds of storage devices tc
achieve both performance and cost-efficiency for Worker n

Servel’|eSS analyt|CS = \Worker: download mode|) Server: download gradient
------- » Worker: upload gradient [E———=> Server: upload model

-
-”
-
-

(2)Optimizing the communication path
« Optimize the communication path when the relationship
between functions is known in advance.

* Another line of work tries to kick the storage server out of
the communication path with network mechanisms. FaaN—<3n m

Limitation 4: Cold Start

Although cloud functions have a much lower startup latency than traditional VM-based instances,
the delays incurred when starting new instances can be high for some applications.

Three factors impacting cold start latency:
(1) the time it takes to start a cloud function
(2) the time it takes to initialize the software environment
(3) application-specific initialization in user code

Feasible optimization for cold start

« Container cache: When a function is finished, the serverless framework can retain its runtime
environment.

* Pre-warming: OpenWhisk can pre-launch Node.js containers if it has observed that the
workload mainly consists of Node.js-based functions.

« Container optimization: Provide lean containers with much faster boot time than vanilla ones

« Looking for other abstractions: Google gVisor, AWS FireCracker, Unikernel

/\“T\J%Jmﬁ

