
Frontier Research of Federated 
Learning and Serverless Computing

马汝辉 副教授
计算机学院

上海交通大学
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Guarantee Data Confidentiality
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Challenges in FL
• Expensive communication

• Systems heterogeneity

• Statistical heterogeneity

• Privacy concerns
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Challenges in FL

Expensive Communication. 
• federated networks are potentially comprised of a massive number of devices, e.g., millions of 

smart phones, and communication in the network can be slower than local computation by many 
orders of magnitude. 
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Challenges in FL

Systems Heterogeneity. 
• The storage, computational, and communication capabilities of each device in federated networks 

may differ due to variability in hardware (CPU, memory), network connectivity (3G, 4G, 5G, wifi), 
and power (battery level).

• Each device may also be unreliable.
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Challenges in FL

Statistical Heterogeneity. 
• Devices frequently generate and collect data in a non-identically distributed manner across the 

network, e.g., mobile phone users have varied use of language in the context of a next word 
prediction task.

• Increases the likelihood of stragglers.
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Challenges in FL

Privacy Concerns. 
• communicating model updates throughout the training process can nonetheless reveal sensitive 

information



Communication-efficiency
• Local updating

• Compression schemes

• Decentralized training
02
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Communication-efficiency

Local updating
• Mini-batch optimization methods have been shown to have limited flexibility to adapt to 

communication-computation trade-offs that would maximally leverage distributed data processing. 

• Allow for a variable number of local updates to be applied on each machine in parallel at each 
communication round

• For convex objectives, distributed local-updating primal-dual methods have emerged as a popular 
way to tackle such a problem. 
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Communication-efficiency

Compression schemes
• Use lossy compression and dropout to reduce server-to-device communication.

(1) constructing a sub-model via Federated Dropout, and by (2) lossily compressing the 

resulting object. This compressed model is then sent to the client, who (3) decompresses 

and trains it using local data, and (4) compresses the final update. This update is sent back 

to the server, where it is (5) decompressed and finally, (6) aggregated into the global model
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Communication-efficiency

Decentralized Training
• In federated learning, a star network (where a central server is connected to a network of devices) 

is the predominant communication topology.

• Decentralized algorithms can in theory reduce the high communication cost on the central server.

Centralized topology Decentralized topology
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Communication-efficiency

Decentralized Training
• Hierarchical communication patterns.



Privacy protection
• Privacy threats/attacks in federated learning (FL)

• Enhance the general privacy-preserving feature of FL

• Associated cost of the privacy-preserving techniques
03



15

Privacy protection

Privacy threats/attacks in FL
• Membership inference attacks

• Unintentional data leakage and reconstruction through inference

• GANs-based inference attacks
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Privacy protection

Membership inference attacks
• The neural network is vulnerable to memorize their training data which is prone to passive and 

active inference attacks. 

• The attacker misuses the global model to get information on the training data of the other users. 
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Privacy protection

Unintentional data leakage and reconstruction
• Is a scenario where updates or gradients from clients leak unintended information at the central 

server.
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Privacy protection

GANs-based inference attacks
• GANs are generative adversarial networks that have gained much popularity in big data domains.

• It is possible to have potential adversaries among FL clients.
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Privacy protection

Enhance privacy-preserving in FL
• Secure multi-party computation

• Differential privacy

• VerifyNet

• Adversarial training
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Privacy protection

Secure multi-party computation
• Secure the inputs of multi-participant while they jointly compute a model or a function.
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Privacy protection

Secure multi-party computation
• Secure the inputs of multi-participant while they jointly compute a model or a function.
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Privacy protection

Secure multi-party computation
• In FL, the computing efficiency is increased immensely since it only needs to encrypt the 

parameters instead of the large volume of data inputs. 
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Privacy protection

Differential Privacy
• Add noise to personal sensitive attributes
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Privacy protection

Differential Privacy
• DP is introduced to add noise to participants’ uploaded parameters
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Privacy protection

VerifyNet
• It gets listed as a preferred mitigation strategy to preserve privacy as it provides double-masking 

protocol which makes it difficult for attackers to infer training data.
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Privacy protection

Adversarial training
• Evasion attacks from an adversarial user aims to fool ML models by injecting adversarial samples 

into the machine learning models.

• The attacker tries to impact the robustness of the FL model with perturbed data.

• Adversarial training, which is a proactive defense technique, tries all permutations of an attack 
from the beginning of the training phase to make the FL global model robust to known adversarial 
attacks.
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Privacy protection

Adversarial training
• Use GAN to generate fake training data.
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Privacy protection

Associated cost



Heterogeneity
• Addressing systems heterogeneity

• Addressing statistical heterogeneity04



30

Heterogeneity

Addressing systems heterogeneity
• Asynchronous communication

• Active sampling

• Fault tolerance

• Using client-specific model



31

Heterogeneity

Asynchronous communication
• Synchronous schemes are simple and guarantee a serial-equivalent computational model, but 

they are also more susceptible to stragglers in the face of device variability. 
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Heterogeneity

Asynchronous communication
• Asynchronous schemes are an attractive approach to mitigate stragglers in heterogeneous 

environments. 
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Heterogeneity

Active sampling
• Actively selecting participating devices at each round.
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Heterogeneity

Fault tolerance
• Fault tolerance has been extensively studied in the systems community and is a fundamental 

consideration of classical distributed systems.

• When learning over remote devices, however, fault tolerance becomes more critical.

• One practical strategy is to simply ignore such device failure, which may introduce bias into the 
device sampling scheme if the failed devices have specific data characteristics. 
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Heterogeneity

Fault tolerance
• Coded computation is another option to tolerate device failures by introducing algorithmic 

redundancy. 
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Heterogeneity

Using client-specific model
• HeteroFL trains heterogeneous local models and aggregate them stably and effectively into a 

single global inference model.
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Heterogeneity

Using client-specific model
• FjORD employs Ordered Dropout (OD) to tailor the amount of computation to the capabilities 

of each participating device.
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Heterogeneity

Statistical heterogeneity
• Overcome the non-IID and unbalanced issue

• Utilize the non-IID and unbalanced characteristic



39

Heterogeneity

Overcome the non-IID and unbalanced issue
• Although the data is not independent and 

identically distributed among all the clients, we 
can relieve this issue by client selection.

• Client selection can be formulated as a deep 
reinforcement learning problem in federated 
learning. 

• It solely relies on model weight information to 
determine which device may improve the global 
model the most —thus preserving the same 
level of privacy as the original FL does.
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Heterogeneity

Overcome the non-IID and unbalanced issue
• Devices with higher loss are given higher relative weight to encourage less variance in the 

final accuracy distribution.
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Heterogeneity

Utilize the non-IID and unbalanced characteristic
• Non-IID data is not just an issue for federated learning, but also a natural feature in this setting. 

• Personalized federated learning is welcomed.

Learn personalized
models for each device; do

not learn from peers.

Learn a global model;
learn from peers.

Learn personalized
models for each device;

learn from peers.
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Heterogeneity

Personalized federated learning 
• FedAMP allows each client to own a local personalized model, it maintains a personalized 

cloud model on the cloud server for each client. 

• FedAMP realizes the attentive message passing mechanism by attentively passing the 
personalized model of each client as a message to the personalized cloud models with similar 
model parameters.

• FedAMP updates the personalized cloud model of each client by a weighted convex 
combination of all the messages it receives. 
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Heterogeneity

Personalized federated learning 
• The base layers are shared with the parameter server while the personalization layers are kept 

private by each device.
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Heterogeneity

Personalized federated learning 
• In addition to only learning for the local objective, FedRoD also proposes to simultaneously 

learn the balanced objective and the local objective on each client. 
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Heterogeneity

Personalized federated learning 
• Rather than localize only the higher layers, FedBN finds that the batch normalization (BN) 

layers in the ResNets are not beneficial for aggregation and proposes to localize all of them.
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Heterogeneity

Personalized federated learning 
• To further personalize models, FedHN assigns one client embedding for one client, and 

generate client model parameters through the hypernetwork on the server. 

Updating the hypernetwork by client models Generating client models
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Heterogeneity

Personalized federated learning 
• With the client embeddings, pFedLA generate the layer-wise aggregation weights instead of 

directly generating the model parameters.
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Heterogeneity

Personalized federated learning 
• Public dataset also helps FL

• Like FedRoD , FedFR learns two objectives on the client, one of which is the balanced 
objective, in the face recognition task. 



Application
• Gboard

• Recommender system

• Autonomous driving

• …
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Application

Gboard
• Google’s first implementation of federated learning. 

• Triggering model is trained federated to tune the results of the pre-trained baseline model for 
better performance. 
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Application

Recommender system
• The news model aims to learn news representations to model news content. 

• The user model is used to learn user representations to model their personal interest.

• LDP denotes the local differential privacy 
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Application

Autonomous driving
• The FTRL framework for collision avoidance RL tasks of autonomous driving cars

• Global model is asynchronously updated by different RL agents.

• Transfer knowledge from virtual world (Airsim platform) to real world
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Application

IOT
• Personalized federated learning framework for intelligent IoT applications.

• Supports flexible selection of personalized federated learning approaches. 
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Application

UAV (Unmanned aerial vehicle)
• Due to the high mobility of UAVs and their limited energy and stringent energy limitations, the 

analysis in previous federated learning work cannot be directly applied for UAV swarms.

• Use a sample average approximation approach from stochastic programming along with a dual 
method from convex optimization.
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Application

Blockchain



Section 2: Frontier Research of 
Serverless Computing

Embrace Cloud Computing
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NumPyWren
• Serverless Linear Algebra01



NumPyWren Overview
Background

• Current distributed programming abstractions such as MPI and MapReduce rely on the tightly 
integrated resources in a collection of individual servers. 

• To write applications for a disaggrated datacenter, the datacenter operator must expose a new 
programming abstraction.

Motivation
• Serverless computing is a programming model in which the cloud provider manages the 

servers, and also dynamically manages the allocation of resources.
• Disaggregation can provide benefits to linear algebra tasks as these workloads have large 

dynamic range in memory and computation requirements.

Contribution
• large scale linear algebra algorithms can be efficiently executed using stateless functions and 

disaggregated storage
• design LAmbdaPACK, a domain specific language for linear algebra algorithms
• NumPyWren can scale to run Cholesky decomposition



Background: Serverless Computing
Cloud providers offer the ability to execute functions on demand, hiding cluster configuration 
and management overheads from end users.

① Cloud providers offer a number of storage options ranging from key-value stores to relational databases.
• The cost of data storage in an object storage system is often orders of magnitude lower when 

compared to instance memory.

② Cloud providers also offer publish-subscribe services like Amazon SQS or Google Task Queue.



Background: Serverless Computing
Cloud providers offer the ability to execute functions on demand, hiding cluster configuration 
and management overheads from end users.

③ Computation resources offered in serverless platforms are typically restricted to a single CPU core and a 
short window of computation.
• AWS Lambda provides 900 seconds of compute on a single AVX core with access to up to 3 

GB of memory and 512 MB of disk storage.

④ The linear scalability in function execution is only useful for embarrassingly parallel computations when there 
is no communication between the individual workers.



Background: Linear Algebra Algorithms
Cholesky factorization is one of the most popular algorithms for solving linear equations, and it is 
widely used in applications such as matrix inversion, partial differential equations, and Monte Carlo 
simulations.
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Communication-Avoiding Cholesky

① Diagonal block Cholesky decomposition

② Parallel column update

③ Parallel submatrix update

④ Diagonal block Cholesky decomposition



Task Enqueue: enqueue the first task that needs to be executed into the task queue

Executor Provisioning: launch an executor, and maintain the number of active executors based 
on task queue size

Task Execution: manage executing and scheduling NumPyWren tasks

Runtime State Update: update the task status in the runtime state store

System Design

The architecture of the execution framework of NumPyWren showing the runtime state during a 6x6 Cholesky 
decomposition. The first block Cholesky instruction has been executed as well as a single column update.



System Design
Fault tolerance in NumPyWren is much simpler to achieve due to the disaggregation of 
compute and storage.

Task Lease: NumPyWren executes failed tasks via a lease mechanism, which allows the system 
to track task status without a scheduler periodically communicating with executors.

Failure Detection and Recovery: Failure detection happens through lease expiration and 
recovery latency is determined by lease length.

Garbage Collection: it is imperative we clear the state when it is no longer necessary.

Autoscaling
• Task scheduling and worker management is decoupled in NumPyWren, which allows auto-

scaling of computing resources for a better cost-performance trade-off.
• We adopt a simple auto-scaling heuristic and it achieves good utilization while keeping job 

completion time low.



Evaluation
System Comparisons

• The amount of bytes read by NumPyWren is always greater than MPI.
• Even though NumPyWren reads more than 21x bytes over the network when compared to MPI, 

our end to end completion time is only 47% slower.



Evaluation
System Comparisons

• For MPI the core-seconds is the total amount of cores multiplied by the wall clock runtime. 
• For NumPyWren we wish to only account for “active cores" in our core-second calculation, as 

the free cores can be utilized by other tasks.
• NumPyWren can achieve resource savings of over 3x for the SVD algorithm.



Evaluation
Scalability

a) Completion time on various problem sizes when NumPyWren is run on same setup as 
ScaLAPACK

b) Total execution core-seconds for Cholesky when the NumPyWren and ScaLAPACK are 
optimized for utilization.

c) Weak scaling behavior of NumPyWren.
d) Comparison of NumPyWren with 128 core single node machine running Cholesky 

decompositions of various sizes



Cirrus
• Cirrus: a Serverless Framework for End-to-end ML 

Workflows02



Cirrus Overview
Background

• The widespread adoption of ML techniques in a wide-range of domains has made machine 
learning one of the leading revenue-generating datacenter workloads.

• The complexity of ML workflows leads to two problems, over-provisioning and explicit resource 
management.

Motivation

• Serverless computing relies on the cloud infrastructure to automatically address the challenges 
of resource provisioning and management.

• The benefits of serverless computing for ML hinge on the ability to run ML algorithms efficiently.

Contribution

• Cirrus is designed to efficiently support the entire ML workflow.

• Cirrus builds on three key design properties, ultra-lightweight, cost-saving, and stateless.

• It yields a 3.75x improvement on time-to-accuracy compared to the best-performing 
configuration ML specialized frameworks.



Background: End-to-end ML Workflow
Dataset preprocessing typically involves an expensive map/reduce operation on data.

Model training: Workers consume data shards, compute gradients, and synchronize with a 
parameter server.

Hyperparameter optimization to tune model and training parameters involves running multiple 
training instances.



Background: Challenges
Machine Learning

• Over-provisioning: The heterogeneity of the different tasks in an ML workflow leads to a 
significant resource imbalance during the execution of a training workflow.

• Explicit resource management: Systems that leverage VMs for machine learning workloads 
generally require users to repeatedly perform a series of onerous tasks.

Serverless Computing
• Small local memory and storage: Lambda functions, by design, have very limited memory 

and local storage.
• Low bandwidth and lack of P2P communication: Lambda functions have limited available 

bandwidth when compared with a regular VM.
• Short-lived and unpredictable launch times: Lambda functions are short-lived and their 

launch times are highly variable.
• Lack of fast shared storage: Because lambda functions cannot connect between themselves, 

shared storage needs to be used.



Design: Principles
Adaptive, fine-grained resource allocation

• To avoid resource waste that arises from over-provisioning, Cirrus should flexibly adapt the 
amount of resources reserved for each workflow phase with fine-granularity.

Stateless server-side backend
• To ensure robust and efficient management of serverless compute resources, Cirrus, by design, 

operates a stateless, server-side backend.

End-to-end serverless API

• Model training is not the only important task an ML researcher has to perform.

High scalability

• ML tasks are highly compute intensive, and thus can take a long time to complete without 
efficient parallelization.



Design: Framework
Client Side

• Client Frontend
• Client Backend

Server Side
• Lambda Worker
• Data Store



Design: Client Side  
Python frontend

• Preprocessing

• Training

• Hyperparameter optimization

Client-side backend

• parse training data and load it to S3

• launch the Cirrus workers on lambdas

• manage the distributed data store

• keep track of the progress of computations

• return results to the Python frontend



Design: Server Side  
Worker runtime

• a smart iterator for training datasets stored in S3

• provides an API for the distributed data store

Distributed data store



Design: End-to-end Workflow



Evaluation: Sparse Logistic Regression
Baseline

• Bosen

• TensforFlow

• Spark



Evaluation: Scalability
Storage scalability

Compute scalability

Parameter server scalability



Evaluation: The Benefits of ML Specialization



LambdaML
• Towards Demystifying Serverless Machine Learning 

Training03



Background: Distributed Machine Learning
Data and Model

Optimization Algorithm

• In each iteration, the training procedure would typically scan the training data, compute 
necessary quantities (e.g., gradients), and update the model.

• Training ML models in a distributed setting is more complex, due to the extra complexity of 
distributed computation as well as coordination of the communication between executors.

Communication Mechanism

• Communication Channel: The efficiency of data transmission relies on the underlying 
communication channel.

• Communication Pattern: Gather, AllReduce, and ScatterReduce

• Synchronization Protocol: bulk synchronous parallel (BSP), asynchronous parallel (ASP)



Background: FaaS vs. IaaS for ML
IaaS: users have to build a cluster by renting VMs or reserve a cluster with predetermined 
configuration parameters

• Cons: There is no elasticity or auto-scaling if the reserved computation resources turn out to be 
insufficient.

FaaS

• Pros: Resource allocation in FaaS is on-demand and auto-scaled, and users are only charged 
by their actual resource usages.

• Cons: FaaS currently does not support customized scaling and scheduling strategies.



Design: System Overview
① Load data

② Compute statistics

③ Send statistics

④ Aggregate statistics

⑤ Update model



Distributed SGD

• Stochastic gradient descent (SGD) is 
perhaps the most popular optimization 
algorithm.

• Gradient Averaging: GA updates the 
global model in every iteration by 
harvesting and aggregating the (updated) 
gradients from the executors.

• Model Averaging: MA collects and 
aggregates the (updated) local models.

Distributed ADMM

• ADMM breaks a large-scale convex 
optimization problem into several smaller 
subproblems

Design: Distributed Optimization Algorithm



Design: Communication Channel
① Each executor stores its generated 

intermediate data as a temporary file in S3; 

② The first executor pulls all temporary files 
from the storage service and merges them to 
a single file;

③ The leader writes the merged file back to the 
storage service;

④ All the other executors (except the leader) 
read the merged file from the storage service; 

⑤ All executors refresh their (local) model with 
information read from the merged file.

An FaaS-based data aggregation



Design: Communication Pattern
AllReduce

ScatterReduce



Design: Synchronization Protocol
Synchronous

• Merging phase: All executors first write their local 
updates to the storage service. The 
reducer/aggregator waits all the other executors.

• Updating phase: The aggregator finishes 
aggregating all data and stores the aggregated 
information back to the storage service.

Asynchronous

• One replica of the trained model is stored on the 
storage service as a global state. 

• Each executor runs independently – it reads the 
model from the storage service, updates the 
model with training data, writes

• the new model back to the storage service – 
without caring about the speeds of the other 
executors.



Evaluation: Distributed Optimization Algorithm



Evaluation: Communication Channel
Comparison of S3, Memcached, DynamoDB, and VM-based parameter server. 

A relative cost larger than 1 means S3 is cheaper, whereas a slowdown larger than 1 means S3 is 
faster. 

DynamoDB cannot handle a large model such as MobileNet.



Evaluation
Communication Patterns

Synchronization Protocols



INFless

• INFless: A Native Serverless System for Low-
Latency, High-Throughput Inference04



INFless’ s Overview
Background: Existing serverless platforms do not cater to the needs of ML inference.

• do not address the challenge of providing solutions for guaranteeing latency

• the resource efficiency at the serverless provider side is also very low

Design Goal: A native serverless inference system introduces several challenges that need to be 
addressed.

• Low latency

• High throughput

• Low overhead

Contribution

• We co-design the batch management and heterogeneous resource allocation mechanism, and 
propose the non-uniform scaling policy to maximize resource efficiency.

• We propose a lightweight combined operator profiling method.

• We design a novel Long-Short Term Histogram (LSTH) policy.

• We completely implement INFless based on OpenFaaS.



Background: Limitations of Existing Serverless Platforms

Observation #1: High latency

• The commercial serverless platform lacks the support of accelerators and therefore cannot 
provide low latency services for large-sized inference models.

Observation #2: For batch-enabled inference, commercial serverless platforms cannot provide low-
latency services for some small-sized models.

Observation #3: Resource over-provisioning

• The proportional CPU-memory allocation policy set by a commercial serverless platform does 
not fit with computationally-intensive inference.

Observation #4: The “one-to-one mapping” request processing policy of commercial serverless 
platforms causes low resource utilization.

Observation #5: OTP batching lacks the codesign of batch configuration, instance scheduling and 
resource allocation, bringing only limited throughput improvement.



Design: System Architecture
① Function deployment

② DAG structure parsing

③ Operator profiling

④ Inference query

⑤ Dispatching and batching

⑥ Resource configuration

⑦ Cold-start avoidance



Design: Built-in, Non-Uniform Batching
Built-in: Batching is integrated into the serverless platform, enabling simultaneous, collaborative 
control over batch size, resource allocation and placements.

Non-uniform: Each instance has an individual batch queue to aggregate inference requests.



Design: Managing Cold Starts with LSTH
Long-term periodicity (LTP): the request load shows a diurnal user access pattern overall;

Short-term burst (STB): there are many sudden changes (including both increases and decreases) 
in short times.

Long-Short Term Histogram (LSTH)
pre-warm = ��pre−warm  +  1 − � �pre−warm 
keep-alive = ��keep−alive  +  1 − � �keep−alive 



Design: Combined Operator Profiling
Observation: Inference functions share a common set of operators, and the execution time is 
dominated by a small subset of them.

Database: build a operator profile database <operator, batch-size, CPU, GPU, time>, and estimate 
the model execution latency based on the database.

Result



Evaluation: Local Cluster Evaluation
High throughput: INFless improves system throughput by 2x-5x.

Component analysis: Every component of INFless contributes much to throughput improvement, 
with batching being the highest.

Flexible configurations: INFless opts for flexible configurations on both batch-sizes and resource 
allocations.



Evaluation: Local Cluster Evaluation
Less over-provisioning: INFless’s resource allocation policy reduces the resource provisioning 
significantly.

SLO violation: INFless can guarantee the latency SLO of inference workloads.

Cold start: Compared with HHP, our LSTH policy can reduce the cold start rate by 20%.



Evaluation: Large Scale Simulation
Scalability: INFless scales well in large-scale evaluations.

Resource fragments: INFless’s resource-aware scheduling algorithm reduces the resource 
fragments significantly.

Cost efficiency: INFless can help service developers and cloud providers reduce the cost of 
constructing inference services.



Conclusion
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Serverless and Machine Learning

Paper Year Conference Topic
NumPyWren 2020 SoCC Matrix computation

Cirrus 2019 SoCC Model training
LambdaML 2021 SIGMOD Model training

INFless 2022 ASPLOS Model inference
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