MJTJﬁ

Frontier Research of Federated
Learning and Serverless Computing

5%i% Bll#R
iTEINFh
LBZERF

MJTJﬁ

Section 1: Frontier Research of
Federated Learning

Guarantee Data Confidentiality

Prlvacy protectlon

" P RS N T,
\"“ ‘« P, i SR Dy
R e BN

Challenges in FL -

Expensive communication
Systems heterogeneity
Statistical heterogeneity

Privacy concerns

/\T\i"%‘i@ﬁdﬁ L

Expensive Communication.

- federated networks are potentially comprised of a massive number of devices, e.g., millions of
smart phones, and communication in the network can be slower than local computation by many
orders of magnitude.

/\T\i"%‘i@ﬁdﬁ L

Challenges in FL

Systems Heterogeneity.
 The storage, computational, and communication capabilities of each device in federated networks

may differ due to variability in hardware (CPU, memory), network connectivity (3G, 4G, 5G, wifi),

and power (battery level).

« Each device may also be unreliable.

Local model
Cloud aggregation

L
¢ ¢ » Edge model
L |

< & » Global model

Bugpeojumop
|epow abp3

Lo'f;al model PR, SRS
ugloading

Local model

training Device

S B — Va e —o Jﬂjﬁ L

Challenges in FL

Statistical Heterogeneity.

* Devices frequently generate and collect data in a non-identically distributed manner across the
network, e.g., mobile phone users have varied use of language in the context of a next word
prediction task.

* Increases the likelihood of stragglers.

S

=223
= —

® @ a o a

/\T\i"%‘i@ﬁdﬁ L

Privacy Concerns.

information

« communicating model updates throughout the training process can nonetheless reveal sensitive

Broadcast Transmission:—»
Update Transmission: =---3

—_———————— — —

Protection at

> y

Sk -
e -
A

y

e —u—]

| Protection at |
= = |
L the Server hldt:u

. Adversary | B,
J_n.::hers&r} Protection|

el i

Framewurl{

T
+
A

Dataset 1 Dataset 2

/Tf\i‘%‘i@ﬁdﬁ L

* Local updating

« Compression schemes

 Decentralized training

/\“m%@ﬁdﬁ L

Communication-efficiency

Local updating

* Mini-batch optimization methods have been shown to have limited flexibility to adapt to
communication-computation trade-offs that would maximally leverage distributed data processing.

» Allow for a variable number of local updates to be applied on each machine in parallel at each
communication round

* For convex objectives, distributed local-updating primal-dual methods have emerged as a popular
way to tackle such a problem.

W =l + 4] VFp(w’) apply updates locally W =~ =W + 1) Z Ay,
_ . ﬁ ﬁ g ’-\
i Bateh O [!'-\’:‘ [f;\ / o= I e e | SN e 81 —
I — — o
computation C~ j——— — / IS T N -:_"}
e F e
ﬁ § ’-\ H
-~ b == = - Y e s ——
communication : - " -~

/\T\J%‘i%ﬁdﬁ L

10

Compression schemes

 Use lossy compression and dropout to reduce server-to-device communication.

Client

(1) constructing a sub-model via Federated Dropout, and by (2) lossily compressing the
resulting object. This compressed model is then sent to the client, who (3) decompresses
and trains it using local data, and (4) compresses the final update. This update is sent back

to the server, where it is (5) decompressed and finally, (6) aggregated into the global model

7 VU N\TF=TSJT

an

Communication-efficiency

Decentralized Training

» In federated learning, a star network (where a central server is connected to a network of devices)
is the predominant communication topology.

« Decentralized algorithms can in theory reduce the high communication cost on the central server.

R N , _.
iictggn Bn ' gm

Centralized topology Decentralized topology

/\T\i"%‘i&ﬂﬁ L

Decentralized Training

* Hierarchical communication patterns.

(()) Client

E Parameter Server

Backbone
Network

-————

b4 @ B \ A
r \
: Q ({)))Edge : « . (2) Edge \
I S ! .) \ | P (@)

W erver : ' Edge P ‘ @ &WSewer 'l
‘\ (t@)) i ! I (() z Server . ;
4 i n, W l \ (@D ((Q:) /
\ o (t.)) : \
a P & \ & o
S O # \ (@D) e e o o
. ’_,f \\ D (()) / e e
p > S~ B - =3 3

i

/\T\J%‘i%ﬁdﬁ L

13

| | h e
vacy protection = ——

« Privacy threats/attacks in federated learning (FL)

 Enhance the general privacy-preserving feature of FL

« Associated cost of the privacy-preserving techniques

/\T\i"%‘i@ﬁdﬁ L

Privacy protection

Privacy threats/attacks in FL
 Membership inference attacks
« Unintentional data leakage and reconstruction through inference

e GANs-based inference attacks

/\T\J%’Z%ﬁdﬁ L

15

Privacy protection

Membership inference attacks

* The neural network is vulnerable to memorize their training data which is prone to passive and
active inference attacks.

The attacker misuses the global model to get information on the training data of the other users.

xl —] (xl,,ll‘ 1 'x]__,]‘il)'}ill E Ek -._--l-+lllli-illlli-!llll-i-lllll!--i-lllli-illlll++llll-+llll|-+l-_-i Targe,t Mﬂde! FI
X2, Vs Machine Learning
= e~ s J Model Training : c
= Xpr V| : J QO Bayeslan Model, O Decision Tres, ‘+ %ﬁ“
i O Linear Model, d MNeural Network, ... ;
Training Dataset ﬂ ey 3 |
o -~ lll*ilil
= . X = (f'l- fg, sas g -xrirr] :
= il i ML-as-a-Service
o - —— P = (Pr1Pr2: “'*Fi.k) AP
a ¥ = argmaxpe
ie[1.k]
Attack Model F, ||u “L” E‘%, |_|'|L|
Membership Inference = Indmdual Data Instance
= Attack Model +——— py = probability vecto
m
£ Deveiapmient (le Px.2: - '.ka)

(P[x €D | pxl PIx €D [pxl)
in, nut

/\T\J%‘i%ﬁdﬁ L

16

Privacy protection

Unintentional data leakage and reconstruction

» Is a scenario where updates or gradients from clients leak unintended information at the central

server.
Participant Save snapshots of joint model
and calculate the difference
6 Infer information
. based on gradients
Adversary Aggregated
0 gradients
Participant . 2 @ X

—
— @R

. Upload local updates
-~

Aggregated a
| gradients

-
Download global model

m%ig\fﬂjﬁ L

17

Privacy protection

GANs-based inference attacks
 GANs are generative adversarial networks that have gained much popularity in big data domains.

» Itis possible to have potential adversaries among FL clients.

T— — — — — — — — — — — — — P S — — T — — — — — — — —

” — ~ N\
/ Y \ |
L | aux I |
Sl Malicious r \ l
K Server | i
() & L wai o[x VIR i
- | . -] D G |[F—>lx.. |
- representatives N fake |
calculation |
P 2 | |
: : \ y, |
" |
_ Comywamsapammeenop)\ MUlt-taskGANmodel

/\“m%@ﬁdﬁ L

18

Privacy protection

Enhance privacy-preserving in FL
» Secure multi-party computation
» Differential privacy
» VerifyNet

« Adversarial training

/\T\J%’Z%ﬁdﬁ L

19

® Secure multi-party computation

» Secure the inputs of multi-participant while they jointly compute a model or a function.

Company A

Private
Data

Secret

Share
aee

MPC
Encoding

Random
Number

Local computation

0 —_{| Private
Data

Company B

MPC
Encoding

Random
Number

Local computation

Secret
Share

[N N |
Secret
Share

xchange secret
shares according to
MPC protocols

‘ Private
Data

Company C

MPC
Encoding

Random
Number

Local computation

Secret
Share

Secret
Share

aee
Secret
Share

/\T\J%Jwﬁ

20

Local Training on
ML/DL Models

Company 1

.....

Company 2

Company 3

— ,;_;,‘_E_‘:

Privacy protection

Secure multi-party computation

Secret Shares

Generation & Exchanges

Company 1

Companv 2

f<.

Company 3 /

3 ; .
T

Location Aggregation

On Secret Shares

Company 1

v

« Secure the inputs of multi-participant while they jointly compute a model or a function

Global Aggregation
On Secret Shares

Company 1

Company 2

>

=8

\l

/>

Company 3

/T\i"%‘i@ﬁdﬁ

Privacy protection

Secure multi-party computation

* In FL, the computing efficiency is increased immensely since it only needs to encrypt the
parameters instead of the large volume of data inputs.

Phase I: Model aggregation committee Phase II: Model aggregation using
election using peer-to-peer MPC MPC service provided by comrrittee

Committee Local model Madel
Election | Training | Aggregation
| e
MPC - | Local lterations | MPC
: T Global Epochs |
LP1

Model Aggregation Committee

Messages: a small array of committee
votes in form of secret shares

Messages: a huge tensor of model’s parameters
and weights in form of secret shares

/\T\i"%‘i@ﬁdﬁ L

22

Differential Privacy

 Add noise to personal sensitive attributes

Untrusted
Aggregator

(Bob)

private
data

noise "" noise &

raw data

Data generators
(peaple) e

Local privacy

Trusted

private
answer

Curator
(Alice)

raw data

Data generators
(people) Ll

Global privacy

1
1

1

1

1

1

1

]

1

: Untrusted
1 Querier

: (Bob)
1

1

1

1

]

1

I

1

1

1

1

I

/\“m%@ﬁdﬁ

23

Differential Privacy

 DP is introduced to add noise to participants’ uploaded parameters

Noisy gradient gradient Local Dataset

ooooo LDP &2\
)%
oo O 4
Download model AOOr] < i Xf} ﬁj
> e8] 7

Upload gradients , :

g—% &

/\T\J%‘i%ﬁdﬁ L

24

Cloud Server

"t
(5]
g//g
Q =
o o
o/ /8
&/ /3
&
o =]
/8
o
an
oo----
o
oo
.
(W)
T
, e
vl

Privacy protection

VerifyNet

» It gets listed as a preferred mitigation strategy to preserve privacy as it provides double-masking
protocol which makes it difficult for attackers to infer training data.

Cloud server

TA
. Share encrypted local
Initialize keypairs gradients and global
for each user parameters
r— /71
| User 1 User 2

/\T\J%‘i%ﬁdﬁ L

25

Privacy protection

Adversarial training
- Evasion attacks from an adversarial user aims to fool ML models by injecting adversarial samples

into the machine learning models.
» The attacker tries to impact the robustness of the FL model with perturbed data.

» Adversarial training, which is a proactive defense technique, tries all permutations of an attack
from the beginning of the training phase to make the FL global model robust to known adversarial

attacks.

/\T\J%‘i%ﬁdﬁ L

Privacy protection

Adversarial training

« Use GAN to generate fake training data.

Attacker’s GAN Victi s GAMN
il
i .
~ > o) - > -— | =

=| = — X'

Attacker Victim & Defender
¢ Server
X

A B
Client 1 Client 2
FrsJTul |
YA RN==d | ™

27

Privacy protection

Associated cost

Approach

Cost

Methodology

Secure Multi-party Computation
Differential Privacy

Hybrid
VerifyNet

Adversarial Training

Efficiency loss due to encryption

Accuracy loss due to added noise in client’s
model

Subdued cost on both efficiency and accuracy

Communication overhead

Computation power, training time for
adversarial samples

Encrypt uploaded parameters
Add random noise to uploaded
parameters

Encrypt the manipulated
parameter

Double-masking protocol
Verifiable aggregation results
Include adversarial samples in
training data

/\“m%@ﬁdﬁ L

28

Heterogeneity -

 Addressing systems heterogeneity

 Addressing statistical heterogeneity

/\T\i"%‘i@ﬁdﬁ L

Heterogeneity

® Addressing systems heterogeneity
« Asynchronous communication
» Active sampling
* Fault tolerance

» Using client-specific model

/\T\J%’Z%ﬁdﬁ L

30

Heterogeneity

® Asynchronous communication

« Synchronous schemes are simple and guarantee a serial-equivalent computational model, but

they are also more susceptible to stragglers in the face of device variability.

subsample devices

subsample devices

R

7 ~Y 7 PY.
- ot .3 / - w > ,/ / /
— - - 4 e end madall . 27 . * == 7
= SR / training =~ ser:i tmo el . o training ~ ’f
/éend the RREAES » send the p
/
4G D , global model » global model training 7
,’ device failure
4 Q () training K

/\T\J%’Z%ﬁdﬁ L

31

® Asynchronous communication

« Asynchronous schemes are an attractive approach to mitigate stragglers in heterogeneous
environments.

4 Global model x, N
Cloud
Buffer
l"\ - e e /
g g g s
Ltarit)
a DP O o

- &3

/\T\i"%‘i@ﬁdﬁ L

32

Heterogeneity

® Active sampling

« Actively selecting participating devices at each round.

MEC platform Clients

1. Initialization ‘(@ E!‘

2. Resource request [o= ===""""""" >=>->
| Resource information |

3. Client Selection{

Ny
]
‘l:.""-.,-

-
4. Distribution |Global modelr~~J=~a_ |
& schedule S Thea

5. Scheduled Updated model .-~

] .__.-"'.- ACK
------------ * —)i-’f
6. Aggregation

/\“m%@ﬁdﬁ L

33

Heterogeneity

Fault tolerance

» Fault tolerance has been extensively studied in the systems community and is a fundamental

consideration of classical distributed systems.
 When learning over remote devices, however, fault tolerance becomes more critical.

* One practical strategy is to simply ignore such device failure, which may introduce bias into the
device sampling scheme if the failed devices have specific data characteristics.

/\T\J%‘i%ﬁdﬁ L

34

Fault tolerance

« Coded computation is another option to tolerate device failures by introducing algorithmic
redundancy.

A.IZ{ A.g]{

/\T\J%’Z%ﬁdﬁ L

Heterogeneity

Using client-specific model

« HeteroFL trains heterogeneous local models and aggregate them stably and effectively into a
single global inference model.

Global model parameters Wg

e

Local model parameters Wf

Local model parameters W’f

Local model parameters Wil

/\T\J%‘i%ﬁdﬁ L

36

Heterogeneity

Using client-specific model

 FjORD employs Ordered Dropout (OD) to tailor the amount of computation to the capabilities
of each participating device.

righer Tier VA RNt ?Jﬂjﬁ

37

Heterogeneity

Statistical heterogeneity
e Overcome the non-lID and unbalanced issue

» Utilize the non-lID and unbalanced characteristic

/\T\J%’Z%ﬁdﬁ L

38

Heterogeneity

O

Overcome the non-lID and unbalanced issue

Check-i

* Although the data is not independent and R
identically distributed among all the clients, we '{”“‘f‘,ﬂﬁ‘: i
can relieve this issue by client selection.

» Client selection can be formulated as a deep ¥
reinforcement learning problem in federated
learning. Selection

. : : : Reporting

* It solely relies on model weight information to {wl®k € [K]}
determine which device may improve the global | Y
model the most —thus preserving the same
level of privacy as the original FL does. | ?

Selection‘ité‘f_e_;ﬁj
Reporting

{wiP|k € [K]}

/\T\J%‘i%ﬁdﬁ L

39

Heterogeneity

Overcome the non-lID and unbalanced issue

* Devices with higher loss are given higher relative weight to encourage less variance in the
final accuracy distribution.

12 Baseline: FedAvg
- Proposed: g-FFL
n
S 8
=
A 61 Increasing the accuracy of the
T o worst-performing devices

ol —\& .
0.0 0.2 0.4

Testing accﬁracy

/\T\J%‘i%ﬁdﬁ L

40

Heterogeneity

Utilize the non-lID and unbalanced characteristic

* Non-lID data is not just an issue for federated learning, but also a natural feature in this setting.

* Personalized federated learning is welcomed.

W
Wi

Wy

Learn personalized
models for each device; do
not learn from peers.

Learn a global model;
learn from peers.

Learn personalized
models for each device;
learn from peers.

/\T\i"%‘i@ﬁdﬁ L

41

Heterogeneity

Personalized federated learning

- FedAMP allows each client to own a local personalized model, it maintains a personalized
cloud model on the cloud server for each client.

« FedAMP realizes the attentive message passing mechanism by attentively passing the
personalized model of each client as a message to the personalized cloud models with similar
model parameters.

« FedAMP updates the personalized cloud model of each client by a weighted convex

combination of all the messages it receives.
Cloud Server

== =
o i
Client C; Client C, Client C; Client C,, m%JT m
M | WS

42

Heterogeneity

Personalized federated learning

 The base layers are shared with the parameter server while the personalization layers are kept
private by each device.

Cloud Model

[]
]
—
Em— Model A IR ModelB EES ModelN
[[(—
1 1 1
. Data A :—_ \ Data B T— \ Data N
] 1 [|
g S % UserB O UserN

/\T\i"%‘i@ﬁdﬁ L

43

Heterogeneity

® Personalized federated learning

* In addition to only learning for the local objective, FedRoD also proposes to simultaneously

Balanced
risk /

learn the balanced objective and the local objective on each client.

Feature ~
X _{Extractor l ‘ G-fiead Ya

P-Head
(Hypernet)

Client’s class
distribution

/\T\J%Jwﬁ L

44

Personalized federated learning

« Rather than localize only the higher layers, FedBN finds that the batch normalization (BN)
layers in the ResNets are not beneficial for aggregation and proposes to localize all of them.

training error

client 1
client 2
client 1 (with BN v = 4.48)
""" client 2 (with BN v = 2.12)

T T T I T

1 6 8 10 12

model parameter w /\V[\W_SJTUJ—ﬁ

45

Heterogeneity

Personalized federated learning

« To further personalize models, FedHN assigns one client embedding for one client, and
generate client model parameters through the hypernetwork on the server.

U; £
01 l | 03 J
[fl(' ;91)];: h(- 5¢) :_;[fs(' ;93)] , R}
Af) A0 0; :
o 1T s h(-59) < - ;9@-)}
72 || B i] A6, J
- i60) 3
Updating the hypernetwork by client models Generating client models

/\T\J%’Z%ﬁdﬁ L

46

Personalized federated learning

« With the client embeddings, pFedLA generate the layer-wise aggregation weights instead of
irectly generating the model parameters.

-

i l@ _@/,_@

| MO

i * Ay = g/’gig)(;)ﬁ oo
i

! L “: :'

| EI NA | i

i X i o0 i

i { H /)A ; |

:\ Train image {1 ;

e L L T T e

Personalized federated learning
* Public dataset also helps FL

 Like FedRoD , FedFR learns two objectives on the client, one of which is the balanced
objective, in the face recognition task.

D ,—1 :Senttoserver [, I ,[E3] : Kept on local

Class embedding Balanced Cosface Loss

oL }Eg_.&;;;'_i

> LCOS

Kl@-)-ciass:

|
B e R

Global data
Decoupled Feature Customization

@ ID 17 K ;) personalized
\ﬂ, , [@®] ID2? binary classification
L — | ! X B
con > s LBCE

D Local Client i Contrastive [I(f) E Lol W

Regularization

1
1
1
1
1
1
1
1
1
1
1
1
1 Local data
1
1
1
1
1
1
1
1
1
1
1

e Gboard

« Recommender system

 Autonomous driving

/\T\i"%‘i@ﬁdﬁ

Application

Gboard

+ Google’s first implementation of federated learning.

« Triggering model is trained federated to tune the results of the pre-trained baseline model for
better performance.

/ Gboard \

Training Task Training

|
|
|
|
' w/initial model [----- Inference
P |
o7 g +—0O _O—— Baseline Model : \
- 7\ Inference |
— | - T Model |
————— + —— o - — -
T riggering Mode i
Click or Ignore l @
Training :
@ ? Task i Training Task
B I Database
Training Cache Training Process Model |
\ / Update |
|
" . l
' Client | Server
|

/\“m%@ﬁdﬁ L

50

Application

Recommender system
 The news model aims to learn news representations to model news content.
 The user model is used to learn user representations to model their personal interest.

 LDP denotes the local differential privacy

P S A | Distribute Updated Model
(T I '
: News || User || Local Model User |
. _ I
: " iodel) [Mode] Clipping LDP Module 4 :
I 1 uEEP——Eamn L R e R e R
[EE-B - ol Nk " =
| — — e | — :
Model Randomized 1
: News |,
: Gradient Gradient
e e e s S byl T @pdate| | Model | ||
; — |
P ettt l User ||,
RIEIENE : e Model ||
, @ W &S | Global Model _ /|
I User Logs B; - e YR, 2020 f teeemcecccmcceaas S——
| @ i + A : Server
i News User MC'_dE| Randomized :
, ([Model | [Model |] | ocal Model Srseliens Grienly ylUser]
JRERC e _T__' Distribute Updated Model

/\T\J%‘i%ﬁdﬁ L

51

Autonomous driving

« The FTRL framework for collision avoidance RL tasks of autonomous driving cars
» Global model is asynchronously updated by different RL agents.

» Transfer knowledge from virtual world (Airsim platform) to real world

B G g
=i T

= Transfer

B r— model

" _ Transfer
model

St, Q¢

/\T\i"%‘i&ﬂﬁ

52

Application

10T

» Personalized federated learning framework for intelligent loT applications.

» Supports flexible selection of personalized federated learning approaches.

Cloud Global model is learned - - Offloading stage
by aggregating and
averaging local models __“ Learning stage

——> Personalization stage

Edge

_______________ ! Integrated ;
, A A Communication and ¥. .
Computing ® A ETEUing 4 -
tasks P : Rk tasks Global L
7 1 7 model Y
’ 1 ' - -~
* ’ .
>~ & 3
loT devices . Persongl
¢ information

/\T\i"%‘i@ﬁdﬁ L

93

Application

UAV (Unmanned aerial vehicle)

* Due to the high mobility of UAVs and their limited energy and stringent energy limitations, the
analysis in previous federated learning work cannot be directly applied for UAV swarms.

 Use a sample average approximation approach from stochastic programming along with a dual
method from convex optimization.

Local FL models

Followers

/\T\i"%‘i@ﬁdﬁ L

54

Application

Blockchain

Bob

Central Aggregator

Testmg Datase

Initial Global Model
3 3.0
=,

Model Updates
VA A 7 + v =

Gaussian Noise Function

Task publisher creates a new contract.
Here is an example:

Criteria: The classification accuracy of MNIST dataset >4
Federated Learning Task: Classification, prediction, etc. 'E‘ ToV
Model: The initial global model (e.g, AlexNet)

Data: Testing dataset
Reward: 200 ETH tokens

New Global Model a

5G Application Scenarios

QO IoT

| Contract is published to the Ethereum blockchain. I

The devices download
the global model and
conduct local model
training locally.

Ethereum
Blockchain

Wearable

If the model fulfills the criteria
of the contract, the model is
sent to the task publisher and
the payment is paid to the well-
behaved participants.

¢

|
Sl |
~1

.
[XI.

™)

g

|
anmmm G
1llll]

”'HH‘
AL Lisd)

The model updates are submitted and
run on the Ethereum Blockchain using
the testing data from the contract.

@

>

The devices use local differential privacy to
defend against membership attacks.

.

/f--na@@-

F—————— Reward

I @ Local Model I

I I
. leoe | 7 I
!_Localdata | ' -" I '_?:’_ o _: Well-behaved
Device 1 Device 2 Device n eee Participants
Local Model Training Jlo¥a oA

/\“m%@ﬁdﬁ

95

MJTJﬁ

Section 2: Frontier Research of
Serverless Computing

Embrace Cloud Computing

SHANGHAI JIAO TO!

G UNIVERSITY

NumPyWren

v &

M RS S

Conclusion

B '_*é'l.)

e T————

t \ . ‘- \ :\'.. ||I

P

i)
-t
| 1 h

NumPyWren

« Serverless Linear Algebra

/\T\J%’Z%ﬁdﬁ L

NumPyWren Overview

Background

« Current distributed programming abstractions such as MPI and MapReduce rely on the tightly
integrated resources in a collection of individual servers.

 To write applications for a disaggrated datacenter, the datacenter operator must expose a new
programming abstraction.

Motivation

» Serverless computing is a programming model in which the cloud provider manages the
servers, and also dynamically manages the allocation of resources.

« Disaggregation can provide benefits to linear algebra tasks as these workloads have large
dynamic range in memory and computation requirements.

® Contribution

* large scale linear algebra algorithms can be efficiently executed using stateless functions and
disaggregated storage

» design LAmbdaPACK, a domain specific language for linear algebra algorithms

« NumPyWren can scale to run Cholesky decomposition
S MN\s=esotull 1

Background: Serverless Computing

Cloud providers offer the ability to execute functions on demand, hiding cluster configuration
and management overheads from end users.

@ Cloud providers offer a number of storage options ranging from key-value stores to relational databases.

» The cost of data storage in an object storage system is often orders of magnitude lower when
compared to instance memory.

@ Cloud providers also offer publish-subscribe services like Amazon SQS or Google Task Queue.

e 2mazon
II;JSQS

Amazon S3

/\T\J%‘i%ﬁdﬁ L

Background: Serverless Computing

Cloud providers offer the ability to execute functions on demand, hiding cluster configuration

and management overheads from end users.

3 Computation resources offered in serverless platforms are typically restricted to a single CPU core and a

short window of computation.

« AWS Lambda provides 900 seconds of compute on a single AVX core with access to up to 3
GB of memory and 512 MB of disk storage.

@ The linear scalability in function execution is only useful for embarrassingly parallel computations when there

IS no communication between the individual workers.

/\T\J%‘i%ﬁdﬁ L

Cholesky factorization is one of the most popular algorithms for solving linear equations, and it is

widely used in applications such as matrix inversion, partial differential equations, and Monte Carlo
simulations.

/\“m%@ﬁdﬁ L

Algorithm 1 Communication-Avoiding Cholesky [5]

Input:
A - Positive Semidefinite Symmetric Matrix
B - block size
N - number of rows in A
Blocking:
Ajj - the ij-th block of A
Output:
L - Cholesky Decomposition of A

1for]€{0 |5 '|}do
22 Lj & cholesky(Aﬂ)
3. forallie {j +1..[g '|} do in parallel
4 Lij = L3} Ay
5 end for
6: forall k € {j+l...[%]}do in parallel
7 foralll {k[%]} do in parallel
8 A & A — L%LU
9 end for
10: end for
11: end for

€@ dynamic parallelism

|
v
g A\ > =
' [e
lter =0 Iter = 0 lter = 0
.Local Cholesky
3 . — > s Column Update

Low Rank Update

— Task Dependence

Iter = 1

Diagonal block Cholesky decomposition
Parallel column update

Parallel submatrix update

® © O e

Diagonal block Cholesky decomposition

@ fine-grained dependencies
m—LSJTLJJ— | &

System Design

® Task Enqueue: enqueue the first task that needs to be executed into the task queue

® Executor Provisioning: launch an executor, and maintain the number of active executors based
on task queue size

® Task Execution: manage executing and scheduling NumPyWren tasks

Runtime State Update: update the task status in the runtime state store

Runtime State & | Executors =7 (Obiect Store
K&O—'.<._ A A A rbll:cilget/;ien?sut{s p H bgcl;et/outp?
e I
TaskQueue & % % % %]

wfeml []]) Provisioner)\

The architecture of the execution framework of NumPyWren showing the runtime state during a 6x6 Cholesky
decomposition. The first block Cholesky instruction has been executed as well as a single column update.

/\T\i"%‘i@ﬁdﬁ L

System Design

Fault tolerance in NumPyWren is much simpler to achieve due to the disaggregation of
compute and storage.

® Task Lease: NumPyWren executes failed tasks via a lease mechanism, which allows the system
to track task status without a scheduler periodically communicating with executors.

Failure Detection and Recovery: Failure detection happens through lease expiration and
recovery latency is determined by lease length.

Garbage Collection: it is imperative we clear the state when it is no longer necessary.

® Autoscaling

» Task scheduling and worker management is decoupled in NumPyWren, which allows auto-
scaling of computing resources for a better cost-performance trade-off.

« We adopt a simple auto-scaling heuristic and it achieves good utilization while keeping job
completion time low.

/\T\J%‘i%ﬁdﬁ L

Evaluation

System Comparisons

* The amount of bytes read by NumPyWren is always greater than MPI.

« Even though NumPyWren reads more than 21x bytes over the network when compared to MPI,
our end to end completion time is only 47% slower.

Algorithm MPI NumPyWren Slow T mpywren 7] o 7500
& (sec) (sec) down g =0 % 5000
$ 1000 65 g — MPI 21x
SVD 5.8e4 4.8e4 N/A .cé} i %)2500 —— numpywren
QR 9.9¢3 1.4e4 1.5x T °
GEMM 5063 8 163 16X o0 Job Fflrfgress 10 >0 Job Porlosgress '
Cholesky 1.7e3 2.5e3 1.5x (2) GEMM (b) OR

/\“m%@ﬁdﬁ

Evaluation

System Comparisons
» For MPI the core-seconds is the total amount of cores multiplied by the wall clock runtime.

« For NumPyWren we wish to only account for “active cores" in our core-second calculation, as
the free cores can be utilized by other tasks.

« NumPyWren can achieve resource savings of over 3x for the SVD algorithm.

Algorithm P NumPyWren Resource

(core-secs) (core-secs) saving

SVD Z.1ET 6.2e6 3.4x
QR 2.6e6 2.2e6 1. 15%
GEMM 1.2e6 1.9e6 0.63x
Cholesky 4.5e5 3.9eb 1.14x

/\T\i"%‘i@ﬁdﬁ L

Evaluation

Scalability
a) Completion time on various problem sizes when NumPyWren is run on same setup as
ScalLAPACK

b) Total execution core-seconds for Cholesky when the NumPyWren and ScalLAPACK are
optimized for utilization.

c) Weak scaling behavior of NumPyWren.

d) Comparison of NumPyWren with 128 core single node machine running Cholesky
decompositions of various sizes

60

1a000 MM | ower Bound [ScalAPACK1k 14000-
W ScalAPACK1k PP e i 6000 - 1.32xlarge
12000 - Scal APACKAK g | numpyvren = Ideal t 12000{ """
- o] . I W
& 10000 B numpywren §40 Qusgrved / Eloooo—
g 8000 2 £ 4000 £
£ = E £ 8000
5 g% < =
S 6000 8 s g S 6000
4 =20 £ o
E 4000 2 82000 S 4000]
© S0 S
2000 II II I I 2000/
. A1 Ml il 5 "
128k 256k 512k 1m 256k 512k m 0 200k 400k 600k 65536 131072 262144 524288
Problem Size Problem Size Problem Size Problem Size

(a) (b) (c) (d)
7 I \F=soTul 1

Cirrus H

 Cirrus: a Serverless Framework for End-to-end ML

Workflows

/\T\i"%‘i@ﬁdﬁ

Cirrus Overview

Background

« The widespread adoption of ML techniques in a wide-range of domains has made machine
learning one of the leading revenue-generating datacenter workloads.

* The complexity of ML workflows leads to two problems, over-provisioning and explicit resource
management.

Motivation

» Serverless computing relies on the cloud infrastructure to automatically address the challenges
of resource provisioning and management.

* The benefits of serverless computing for ML hinge on the ability to run ML algorithms efficiently.
® Contribution
 Cirrus is designed to efficiently support the entire ML workflow.

 Cirrus builds on three key design properties, ultra-lightweight, cost-saving, and stateless.

S
U vields a 3. X improvement on time-to-a Jracy compared to the best-performi m JI B |

Background: End-to-end ML Workflow

Dataset preprocessing typically involves an expensive map/reduce operation on data.

® Model training: Workers consume data shards, compute gradients, and synchronize with a
parameter server.

Hyperparameter optimization to tune model and training parameters involves running multiple
training instances.

@ Worker
o Dataset | Training

Shard l | fo— — —) Data

% g % ’é (Worker Worker) (Worker
| | | o o o |
Vmode&\ lT / model
¥ ¥ v Parameter "
Dataset) Model Training _y Hyperparameter e model’-=n \/model
Preprocessing Tuning

/\“m%@ﬁdﬁ L

Background: Challenges

Machine Learning

« Over-provisioning: The heterogeneity of the different tasks in an ML workflow leads to a
significant resource imbalance during the execution of a training workflow.

« Explicit resource management: Systems that leverage VMs for machine learning workloads
generally require users to repeatedly perform a series of onerous tasks.

Serverless Computing

« Small local memory and storage: Lambda functions, by design, have very limited memory
and local storage.

 Low bandwidth and lack of P2P communication: Lambda functions have limited available
bandwidth when compared with a regular VM.

« Short-lived and unpredictable launch times: Lambda functions are short-lived and their
launch times are highly variable.

» Lack of fast shared storage: Because lambda functions cannot connect between themselves,
shared storage needs to be used.

/\T\i"%‘i@ﬁdﬁ

Design: Principles

® Adaptive, fine-grained resource allocation

 To avoid resource waste that arises from over-provisioning, Cirrus should flexibly adapt the
amount of resources reserved for each workflow phase with fine-granularity.

Stateless server-side backend

» To ensure robust and efficient management of serverless compute resources, Cirrus, by design,
operates a stateless, server-side backend.

End-to-end serverless API
* Model training is not the only important task an ML researcher has to perform.
High scalability

* ML tasks are highly compute intensive, and thus can take a long time to complete without
efficient parallelization.

/\T\J%‘i%ﬁdﬁ L

Design: Framework

Client Side
* Client Frontend
* Client Backend

Server Side
 Lambda Worker
e Data Store

Dashboard

4

Python API

L

Client Frontend

Preproc.| Training || Tuning

ﬁICreate/Stop Task

flient Backend
Task Lambda

| Lambda Worker

Data iterator API |

Minibatch buffer |

Sparse LR| | Mat. Fact. || LDA]

Data store client API

Data store l(g radient)

put ‘]‘ get
(model)

" PSAPI Key-value API 1

SGD

Adagrad || pmodels

Key-values

Scheduler | Manager Momentum
| . >
Client side Server side
(stateful) (stateless)

/\“m%@ﬁdﬁ L

Design: Client Side

Python frontend

* Preprocessing

 Training Dashboard

« Hyperparameter optimization] Python API |

Client Frontend

Client-side backend

Preproc.|| Training || Tuning

 parse training data and load it to S3 ﬁICreate/StopTask
 launch the Cirrus workers on lambdas Client Backend
- Task Lambda
* manage the distributed data store Scheduler| | Manager
» keep track of the progress of computations <
Client side
 return results to the Python frontend (stateful)

/\T\i"%‘i@ﬁdﬁ L

Design: Server Side

Worker runtime

« a smart iterator for training datasets stored in S3

 provides an API for the distributed data store

Distributed data store

API

Description

int send_gradient X(
ModelGradient” g)

Sends model gradient

SparseModel get sparse_model X(
const std::vector<int> & indices)

Get subset of model

Model get_full_model_X()

Get all model weights

set_value(string key, char” data, int
size)

Set intermediate state

std::string get value(string key)

Get intermediate state

Lambda Worker
Data iterator API }

| Minibatch buffer |

Sparse LR| | Mat. Fact. || LDA
Data store client API

l put T get
Datastore v(gradient) I(model)
1 PSAPI | Key-value API

SGD Adagrad | models

e Key-values

Server side
(stateless)

m%ig\fﬂjﬁ L

@) Design: End-to-end Workflow

import cirrus
import numpy as np

local_path = "local_criteo"
s3_input = "criteo_dataset"
s3_output = "criteo_norm"

cirrus.load_libsvm(local_path, s3_input)

cirrus.normalize(s3_input, s3_output,
MIN_MAX_SCALING)

(a) Pre-process

params = {
"n_workers': 5,
nepst e 1,

'worker_size': 1024,
'dataset': s3_output,
'epsilon': 0.0001,
"timeout': 20 * 60,
'model_size': 2%%19,

}

1r_task = cirrus.lLogisticRegression(params)
result = Ir_task.run()

(b) Train

learning rates
lrates = np.arange(9.1, 10, 0.1)
minibatch_size = [100, 1000]

gs = cirrus.GridSearch(
task=cirrus.LRegression,
param_base=params,
hyper_vars=["learning_rate", "minibach_size"],
hyper_params=[lrates, minibatch_size])

results = gs.run()

(c) Tune

/\T\J%‘i%ﬁdﬁ L

Evaluation: Sparse Logistic Regression

Baseline
 Bosen

 TensforFlow

» Spark
0.51 _ 0.48 _
—— Cirrus 10 workers = Cirrus .
. Cirrus 5 workers = Tensorflow —— (Cirrus
0.50- ‘ :. -— ggz::;:zx::?ﬁwﬁ:(ri;s 0.471 —— Spark
%)) | ——— Bosen 4 server 32 workers (7))
)] (|l - wn
20.49 (Y ey o TR
0 500 1000 2 0 500 1000 1500 250 ~ 300 350
Time (sec) Time (sec) Time (sec)
(a) Bosen (b) Tensorflow (c) Spark

/\T\i"%‘i@ﬁdﬁ L

Evaluation: Scalability

Storage scalability

® Compute scalability

Parameter server scalability

Agg. Thr.put (GB/s)

--+--|deal Linear Scaling

-
-7
P
P
o
B
-
i -
-
-
»
-
e
-
4 -
-
-
-
s

10 100 1000
Number of Workers

(a) AWS S3

103

Gradients / sec

——|deal Linear Scaling

1 10 100
Number of Workers

(b) Lambda

101_

—-+—|deal Linear Scaling

1 10 100 600
Number of Workers

(c) Param. Server

/\T\i"%‘i@ﬁdﬁ L

Test Loss

0.70 1.
i ---- PyWren
i T |- - + Reuse Lambdas + Async.
0.65 - by -=-=-+ 4+ Sparse Grad. + Pref.
T + Redis
AN | s Cirrus (wo/ Pref.)
0604 ees=a. —— Cirrus (w/ Pref.)
0.55{| "
0.50 1
0 200 400 600 800
Time (sec)

(a) Convergence over time.

pd

o o
w B

o
'—I

Model updates / sec
= = S = =

o
°

PyWren

Cirrus Cirrus
(wo/ Pref.) (w/ Pref.)

(b) Model updates per second.

/\T\J%‘i%ﬁdﬁ

|

. ‘LambdaML o F

« Towards Demystifying Serverless Machine Learning

Training

/\T\J%’Z%ﬁdﬁ L

Background: Distributed Machine Learning P

Data and Model

® Optimization Algorithm
 |In each iteration, the training procedure would typically scan the training data, compute

necessary quantities (e.g., gradients), and update the model.

* Training ML models in a distributed setting is more complex, due to the extra complexity of
distributed computation as well as coordination of the communication between executors.

Communication Mechanism

« Communication Channel: The efficiency of data transmission relies on the underlying

communication channel.
« Communication Pattern: Gather, AllIReduce, and ScatterReduce

« Synchronization Protocol: bulk synchronous parallel (BSP), asynchronous parallel (ASP)

/\T\J%‘i%ﬁdﬁ L

Background: FaasS vs. laaS for ML

laaS: users have to build a cluster by renting VMs or reserve a cluster with predetermined
configuration parameters

« Cons: There is no elasticity or auto-scaling if the reserved computation resources turn out to be
insufficient.
FaaS

* Pros: Resource allocation in FaaS is on-demand and auto-scaled, and users are only charged
by their actual resource usages.

« Cons: FaaS currer ling strategies.

Intermediate | 1 Merged
State L____State

Train Data Model

/\“m%@ﬁdﬁ L

Design: System Overview

Load data
Compute statistics
Send statistics
Aggregate statistics

Update model

LambdaML
/~ ™\
[tR | [sy | [kMeans | | MobiteNet |
ML Model %3
o
5
I SGD I I Model Average I | ADMM I
Distributed Optimization
I AllReduce I I Synchronous |
User I ScatterReduce I I Asynchronous |
C(gg Comm. Pattern Synchronization
S .
9 -
1 S
I e
“.\ Worker | .-
AWS Web Ul -
l Training Engine]
Submit Job Worker
@ ‘ Train Data ‘ ‘ Model ‘
Allocate A eCompute
Resource | Statistics
::> | [Intermediate &l Worker
| State |
Load | X Update
(1] (3] Send O Vodel
Statistics
Serverless l:l Aggr.eg_ate r 777777777777777 |
Instances [1 statistics | Merged State |
[' :

Communication Channel

/\T\i"%‘i@ﬁdﬁ

Design: Distributed Optimization Algorithm

Distributed SGD

« Stochastic gradient descent (SGD) is
perhaps the most popular optimization
algorithm.

* Gradient Averaging: GA updates the
global model in every iteration by
harvesting and aggregating the (updated)
gradients from the executors.

* Model Averaging: MA collects and
aggregates the (updated) local models.
Distributed ADMM

« ADMM breaks a large-scale convex
optimization problem into several smaller

LambdaML
4 ™\
I LR I | SVM I I KMeansl I MobileNet I
ML Model =
=
g
I SGD I I Model Average l I ADMM I
Distributed Optimization
S—
| AllReduce l | Synchronous]
User | ScatterReduce | | Asynchronous |
f(g)) Comm. Pattern Synchronization
o J
e
I -
“.‘ Worker | T
AWS Web Ul -
[Training Engine }
Submit Job) Worker
@ | Train Data | | Model |
Allocate A Compute
Resource | 9Statistics
':> | [Intermediate v Worker
} Stale//,
Load | - Update
o Datal - 0 5‘?”‘? 9 Model
-~ Statistics
—— 0
| - S
Serverless | I | I | | Aggregate 1
Instances [statistics | Merged State |
Train data | e

AWS S3

subproblems

Communication Channel

/\T\J%“i%ﬁdﬁ

Design: Communication Channel

Each executor stores its generated LambdaML .
intermediate data as a temporary file in S3; [t] [Cowm] [eans | [Cwtobiener]
ML Model g
The first executor pulls all temporary files [soo | [esetmverage] [2o || °
Distributed Optimization

from the storage service and merges them to

iale fil Train Data | | |éL 6|J | | | . 1|l | | |
a single file;] ,
Model Lot __:
The leader writes the merged file back to the ntermediate 65
: Stat X X 7
storage service; Frm s [05 Lo] [GCI Global Model]]
LM?T?E?EE?E?_E S3/ElastiCache VM-based Parameter Server
All the other executors (except the leader) [e Gompute _
: . ﬁ%é blaség data aggregation
read the merged file from the storage service; B : SHE
. . e e e oLoadl /,-/ g eUpdate
All executors refresh their (local) model with Pate | =" \© satistics Hodel
. . . (] e
information read from the merged file. Serverless =1 ‘Stretes | Merged State|
Train data [e

AWS S3 Communication Channel

A=t

® AllIReduce

® ScatterReduce

Intermediate

State

AllReduce

Workers

Storage
Channel

ScatterReduce

LambdaML
a ™\
[LR || svm || KMeans | | MobileNet |
ML Model g
(=]
g
| s6D | | ModelAverage | | ADMM |
Distributed Optimization
| AllReduce | | Synchronous |
User | ScatterReduce | | Asynchronous |
[(\’S Comm. Pattern Synchronization
N J
< .
ey -
“.‘ Worker | T
AWS Web Ul i
[Training Engine J
Submit Job - Worker
@ 1 Train Data | | Model ‘
Allocate A Compute
Resource | 9Statistics
'::> | [Intermediate - Worker
} State
Load | X Update
0 - Send 9
Dat Model
i il 9 Statistics i
——— 0o
Serverless I:I Aggr‘eg'ate r _______________ E
Instances [statistics | Merged State |
3 i |
Train data | e

Communication Channel

AWS S3

/\”f\iﬁﬂsmﬂﬁ

Design: Synchronization Protocol

Synchronous

» Merging phase: All executors first write their local
updates to the storage service. The
reducer/aggregator waits all the other executors.

« Updating phase: The aggregator finishes
aggregating all data and stores the aggregated
information back to the storage service.

Asynchronous
* One replica of the trained model is stored on the

storage service as a global state.

« Each executor runs independently — it reads the
model from the storage service, updates the
model with training data, writes

» the new model back to the storage service —

avactitore

User

3

i
! confs ‘.‘

LambdaML
f N
I LR I | SVM IIKMeansl I MobileNet I
ML Model g
o
5
I SGD I I Model Average l I ADMM I
Distributed Optimization

AllReduce I

l

ScatterReduce |

Comm. Pattern

| Synchronous]

I Asynchronous I

Synchronization

AWS Web Ul

@ Submit Job

Serverless
Instances

(N
e
“-‘ Worker | .
[Training Engine }
: Worker
| TrainData | | Model |
Allocate A Compute
Resource | lQStatistics
':> | [Tntermediate o Worker
l State
o Load I - = g 9 Update
Data 0 enc Model
Statistics
0o
— Aggregate fTTTTTT I
/]
1 statistics Merged Statei

Communication Channel

S N\G=rsotull 1L

E-@- ADMM, 300 workers
0.72 | =@= MA-SGD,300 workers
GA-SGD, 300 workers

w
3
— 0.68
0.64 . -
0 200 400 600
Wall clock time (seconds)
0.65
== ADMM,300 workers
0.6 == MA-SGD,300 workers
E GA-SGD,300 workers
w
8 0,55k
S ;
0.5
0.45 * ’
0 10 20 30
Wall clock time (seconds)
" —8= MA-SGD,300 workers
GA-SGD,300 workers
1.0F
(12 E
w
8
0.1

103 10°
Wall clock time (seconds)

P-@- ADMM, 300 workers
== MA-SGD,300 workers
GA-SGD,300 workers

0 50 100 150 200
Communications

(a) LR, Higgs.

== ADMM,300 workers
_ == MA-SGD,300 workers
E <= GA-SGD,300 workers

0.0 25 50 7.5 10.0
Communications

(b) SVM, Higgs.

" =6— MA-5GD,300 workers
GA-SGD,300 workers

iot 103
Communications

(c) MobileNet, Cifar10.

Speedup

100 - 10 workers
E . /7. 300 workers
10g y 3.5
: 1 / 1Y 1
1E / /
% 7
[0.08
™ 7 A %
ADMM MA-SGD GA-SGD
Speedup
100 ¢ 10 workers
: 15 ## 300 workers
L 7,
! 7 3.7
i 7
1 / 1 /
1F
1
L 0.08
2 A A A
ADMM MA-SGDGA-SGD
Speedup
[10 workers
10f /7 300 workers
i 1.9
I 1 B 1
o %
0.1 - é e
- 7/ S
MA-SGD GA-SGD

/\T\J%’Z%ﬁdﬁ

Evaluation: Communication Channel

Comparison of S3, Memcached, DynamoDB, and VM-based parameter server.

faster.

DynamoDB cannot handle a large model such as MobileNet.

® A relative cost larger than 1 means S3 is cheaper, whereas a slowdown larger than 1 means S3 is

Memcached vs. S3 ~ DynamoDB vs. S3 VM-PS vs. S3
Workload

cost slowdown cost slowdown cost slowdown
LR, Higgs, W=10 5 4.17 0.95 0.83 4.7 3.85
LR Higgs,W=50 4.5 3.70 0.92 0.81 4.47 3.70
KMeans,HiggS,W=50,k=1O 1.58 1.32 .13 0.93 1.48 123
KMeanS,HiggS,W=50,k=1K 1.43 113 1.03 0.90 .52 127
MobileNet,Cifar10,W=10 0.9 0.77 N/A N/A 4.8 4.01
MobileNet,Cifar10,W=50 0.89 0.75 N/A N/A 4.85 4.03

/\T\J%Jwﬁ

Evaluation

Communication Patterns

Model & Dataset Model Size AllReduce ScatterReduce
LR,Higgs,W=50 224B 9.25 9.8s
MobileNet,Cifar10,W=10 12MB 3.3s 3.1s
ResNet,Cifar10,W=10 89MB 17.35 8.5s

Synchronization Protocols

LR, Higgs, W=10 LR, RCV1, W=5 MN, Cifar10, W=10
0.70 2.5
0.72 4 S-ASP S-ASP 20E S-ASP
" BSP 0.69 BSP 150 BSP
3 .
- 0.68 0.68 | | 1-0 i
0.5F
] 4 | | " 7 1 . i i
0.6 0 200 400 0.6 0 200 400 OO 4000 8000
Time (seconds) Time (seconds) Time (seconds)

m%ig\fﬂjﬁ

INFless f F

« INFless: A Native Serverless System for Low-

Latency, High-Throughput Inference

/\T\J%’Z%ﬁdﬁ

INFless’ s Overview

Background: Existing serverless platforms do not cater to the needs of ML inference.
» do not address the challenge of providing solutions for guaranteeing latency
« the resource efficiency at the serverless provider side is also very low
Design Goal: A native serverless inference system introduces several challenges that need to be
addressed.
* Low latency
* High throughput
* Low overhead
Contribution

* We co-design the batch management and heterogeneous resource allocation mechanism, and
propose the non-uniform scaling policy to maximize resource efficiency.

» We propose a lightweight combined operator profiling method.

/\T\J%‘i%ﬁdﬁ L

* We design a novel Long-Short Term Histogram (LSTH) policy.

Background: Limitations of Existing Serverless Platforms g/

Observation #1: High latency
* The commercial serverless platform lacks the support of accelerators and therefore cannot

provide low latency services for large-sized inference models.

Observation #2: For batch-enabled inference, commercial serverless platforms cannot provide low-
latency services for some small-sized models.
Observation #3: Resource over-provisioning
» The proportional CPU-memory allocation policy set by a commercial serverless platform does

not fit with computationally-intensive inference.

® Observation #4: The “one-to-one mapping” request processing policy of commercial serverless
platforms causes low resource utilization.

Observation #5: OTP batching lacks the codesign of batch configuration, instance scheduling and
resource allocation, bringing only limited throughput improvement.

/\T\i"%‘i@ﬁdﬁ L

Q ©@ @ ® @ O 6

Design: System Architecture

Function deployment
DAG structure parsing
Operator profiling
Inference query
Dispatching and batching
Resource configuration

Cold-start avoidance

8 0 [w Y. 9@* "@a e Operator
@ / Predicti Model :u Profiles
Developer rediction Mode

Latency SLO ~ '

(4 “ A0 Coldstart
fo\)_’ Gateway Wotldoad ¥ ~~<. Cluster (7 Manager
User | Auto-scaling Status update

Invocations Engine N
I ;/ 5
l O ool — | ©
o—é) —_— “luster
Dispatcher ~00 —
Batching Scheduler

/\T\J%Jwﬁ

Design: Built-in, Non-Uniform Batching

Built-in: Batching is integrated into the serverless platform, enabling simultaneous, collaborative

control over batch size, resource allocation and placements.

] Can be submitted

Execution
= B Cannot be processed

SLO Rejected submission
. i
m

4 4

time

Batch Thread

(a) Over-submission

® Non-uniform: Each instance has an individual batch queue to aggregate inference requests.

Instance lifetime
L | 8|
L

-~ Workload
— Upper bound

B Instance

 Scaling up

—t N 9

Tuning disp. rate
==l €<— Scaling in

—

o
=
Ko
—

nstance scaling

/\“m%@ﬁdﬁ

Design: Managing Cold Starts with LSTH

Long-term periodicity (LTP): the request load shows a diurnal user access pattern overall;

® Short-term burst (STB): there are many sudden changes (including both increases and decreases)
in short times.

Long-Short Term Histogram (LSTH)

pre-warm = pre-warm * 1= pre-warm
keep-alive = keep-alive ¥ 1~ keep-alive

A JJpre-warmi Lkeep-alive :
20 INICREERRIPEOAEEN | e
E O Bursty ¥ sudden ¥ by ———
= Increase Drops 2 ' ! ! :
10t = '
g S
= —

;5 -
4 0
TUES WED THU Request Interval Time (IT)
(a) Workload features (b) Weighted hybrid hist policy

/\T\J%‘i%ﬁdﬁ L

Observation: Inference functions share a common set of operators, and the execution time is

dominated by a small subset of them.

£ 100 84w 260 56 »
o Il Invocation Frequency € o =
= 75 I Execution Time 6.3 ‘q'; = 45 42 ;’
S 50 42 E 8 30 28 E
>
g 25 217 Z 15 147
- e = 0
(o] 0 0 o 0 0 x
CEN=SN:SO0OSXCESXE>Sg0XEVQES QXA A=W XS ET S
* E3RCIc2Od38S3955F85aS35E893 W o+ SE3385fFs ¢
§YO8 fS2L4RTTTagg5Eefg Orads 3 pE= °
2 § §o-= SCCHE & 508 Sg <&
'R (5] E = L
(a) LSTM-maxclass (b) ResNet-50

Database: build a operator profile database <operator, batch-size, CPU, GPU, time>, and estimate
the model execution latency based on the database.

Result 600 i 22200 730

E 450 e . - £ Avg Error = 9.74%

2300 - tag 3100 \""’-%-% 320

S 150 g 3

® T Avg Error=7.8% g

s g—— 4 g———— JA40——— 1
0 10 20 30 0 10 20 30 0 51015202530
of Configuations # of Configuations # of Configuations

(a) ResNet-50 (b) MobileNet (c) LSTM-2365 VA RNE—=<1 m |

High throughput: INFless improves system throughput by 2x-5x.

S 1 MopenFaas* 1.0 5§ . I BATCH
2 0.8 WBATCH 2 ' EEINFless

© 0.6 IINFless <)

= 0.42 3 0.5

£ 04 0.2 g
= 02 12 =

. 0)

g Sporadic Periodic Bursty g 150 200 250 300 350 400
= Arrival Patterns = Latency SLO (ms)

(a) Thp. under production traces (b) Thp. under different SLOs

Component analysis: Every component of INFless contributes much to throughput improvement,
with batching being the highest.

® Flexible configurations: INFless opts for flexible configurations on both batch-sizes and resource
allocations.

/\T\i"%‘i&ﬂﬁ

Evaluation: Local Cluster Evaluation

Less over-provisioning: INFless’s resource allocation policy reduces the resource provisioning
significantly.

300 ——Over-provision ‘Workload

y
i ‘L_‘—f‘__,_rh_‘_‘%
T
0

200 400 600 800 1000
Over-provision ‘Workload ——Lower bound

200

100

0
200 400 600 800 1000

Timeline (s)
SLO violation: INFless can guarantee the latency SLO of inference workloads.

Requests/s

Requests/s

Cold start: Compared with HHP, our LSTH policy can reduce the cold start rate by 20%.

LSTH -HHP x Coldstart Ratlo

Q

21.5 =
(2] 3]
=) 1! E
<4} -
o L
505) 3
8 o 3
o

4=0.7 4=0.5 4=0.3 v=0.7 v=0.5 v=0.3 v=0.7 =0.5 4=0.3 /V\ij m
Sparadic Periodic Bursty /\(\ M JT

Evaluation: Large Scale Simulation

Scalability: INFless scales well in large-scale evaluations.

® Resource fragments: INFless’s resource-aware scheduling algorithm reduces the resource
fragments significantly.

» 0.2 Il AvailConfig() 1 w 245% INFless OpenFaaS"*
£ -Slcl:(egule() - F EEBATCH EEIBATCH:RS
) —==\lakespan g +« 30%
E0.1 0.5 & g,
0,
- < 5 15%
3 = £
x 0 0 w o4
L 100500 1k 2k 5k 10k 100 500 1k 2k 5k 10k
of Instances # of Instances
(a) Scheduling overhead (b) Resource fragments

® Cost efficiency: INFless can help service developers and cloud providers reduce the cost of
constructing inference services.

/\T\J%‘i%ﬁdﬁ

Conclusion H

/\T\i"%‘i@ﬁdﬁ

Serverless and Machine Learning

NumPyWren 2020 SoCC Matrix computation
Cirrus 2019 SoCC Model training

LambdaML 2021 SIGMOD Model training
INFless 2022 ASPLOS Model inference

/\T\J%Jwﬁ L

